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The Capsule Parachute Assembly System (CPAS) project has increased efforts to demonstrate the performance 
of fully integrated parachute systems at both higher dynamic pressures and in the presence of wake fields using a 
Parachute Compartment Drop Test Vehicle (PCDTV) and a Parachute Test Vehicle (PTV), respectively.  Modeling 
the extraction and separation events has proven challenging and an understanding of the physics is required to 
reduce the risk of separation malfunctions.  The need for extraction and separation modeling is critical to a 
successful CPAS test campaign.  Current PTV-alone simulations, such as Decelerator System Simulation (DSS), 
require accurate initial conditions (ICs) drawn from a separation model. Automatic Dynamic Analysis of 
Mechanical Systems (ADAMS), a Commercial off the Shelf (COTS) tool, was employed to provide insight into the 
multi-body six degree of freedom (DOF) interaction between parachute test hardware and external and internal 
forces. Components of the model include a composite extraction parachute, primary vehicle (PTV or PCDTV), 
platform cradle, a release mechanism, aircraft ramp, and a programmer parachute with attach points. Independent 
aerodynamic forces were applied to the mated test vehicle/platform cradle and the separated test vehicle and 
platform cradle. The aero coefficients were determined from real time lookup tables which were functions of both 
angle of attack (α) and sideslip (β).  The atmospheric properties were also determined from a real time lookup table 
characteristic of the Yuma Proving Grounds (YPG) atmosphere relative to the planned test month.  Representative 
geometries were constructed in ADAMS with measured mass properties generated for each independent vehicle.  
Derived smart separation parameters were included in ADAMS as sensors with defined pitch and pitch rate criteria 
used to refine inputs to analogous avionics systems for optimal separation conditions. Key design variables were 
dispersed in a Monte Carlo analysis to provide the maximum expected range of the state variables at programmer 
deployment to be used as ICs in DSS.  Extensive comparisons were made with Decelerator System Simulation 
Application (DSSA) to validate the mated portion of the ADAMS extraction trajectory.  Results of the comparisons 
improved the fidelity of ADAMS with a ramp pitch profile update from DSSA.  Post-test reconstructions resulted in 
improvements to extraction parachute drag area knock-down factors, extraction line modeling, and the inclusion of 
ball-to-socket attachments used as a release mechanism on the PTV.  Modeling of two Extraction parachutes was 
based on United States Air Force (USAF) tow test data and integrated into ADAMS for nominal and Monte Carlo 
trajectory assessments.  Video overlay of ADAMS animations and actual C-12 chase plane test videos supported 
analysis and observation efforts of extraction and separation events. The COTS ADAMS simulation has been 
integrated with NASA based simulations to provide complete end to end trajectories with a focus on the extraction, 
separation, and programmer deployment sequence.  The flexibility of modifying ADAMS inputs has proven useful 
for sensitivity studies and extraction/separation modeling efforts. 
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Nomenclature 
A     =  Airborne 
Aref     = Reference Area 
AESM   = ADAMS Extraction and Separation Model 
AGL   = Above Ground Level 
Cx     =   Force aerodynamic coefficient associated with the direction 
Cxx    = Moment aerodynamic coefficient associated with the direction 

CDT   =  Cluster Development Test 
cm    = Center of Mass 
cp    = Center of Pressure 
Downdraft = Design variable with range of 2500±2000 lbs; dispersed during a Monte Carlo analysis. 
EDU   = Engineering Development Unit 
Fa     = Axial Drag 
Fn     = Normal, up and down 
Fy     = Side to side 
IMU   = Inertial Measurement Unit 
Lref    =  Reference Length 
Mll   = Moment about the roll axis 
Mm   = Moment about the pitch axis 
Mln    = Moment about the yaw axis 
 ത   = Dynamic Pressureݍ
Rho    =   Atmospheric density. 
 .ሻ  =  Extraction parachute apparent drag area as a function of timeݐ஽ܵ௥௘௙ሺܥ
Vex    = Velocity of the extraction parachute. 
Vm   = Magnitude of the extraction parachute velocity  
Vmated   = Velocity of the mated CPSS/PTV cg. 
Vz    = z-component of the extraction parachute cm velocity vector 
 
 

I. Introduction 
NDERSTANDING the physics, dynamics and force interactions during extraction and separation events 
between an aircraft, test article, and platform are vital to the success of a Capsule Parachute Assembly System 

(CPAS) test campaign. Aerodynamics, atmosphere, vehicle configuration, mass properties, and the force interactions 
between these objects are key components that must be considered when designing for a drop test.  Optimizing test 
vehicle mass properties to support end-to-end flight stability is critical, but a vehicle separation solution is necessary 
to initiate a favorable deployment sequence. Without a good separation solution, the CPAS drop test campaign 
would be at increased risk of loss-of-test-vehicle (LOTV) malfunctions during deployment. 

The first test of a fully integrated CPAS system, Cluster Development Test 2 (CDT-2), occurred during the 
Generation I testing phase.  The configuration consisted of a capsule shaped vehicle called a Parachute Test Vehicle 
(PTV) mated to a Cradle and Platform Separation System (CPSS).  The approximately 30,000 lbs mated vehicle was 
extracted using a C-17 aircraft at an altitude of 25,000 ft.  The CDT-2 test resulted in a LOTV due to a programmer 
deployment malfunction that occurred during the initial stages of flight after the PTV/CPSS separation event1.  
Valuable test experience was gained from this effort that is implemented in subsequent flights.  To provide insight to 
the force interactions of test articles during the intricate extraction and separation flight phases, the development of 
the Commercial off the Shelf (COTS) tool Automatic Dynamic Analysis of Mechanical Systems (ADAMS) was 
employed.  Efforts were invested to model the extraction-separation event of CPAS test articles based on physics 
principles versus qualitative solutions or assumptions. 

Since the test execution of CDT-2, three successful Engineering Development Unit (EDU) capsule tests have 
been performed.  EDU-A-CDT-3-3 was the first baseline capsule test after the CDT-2 mishap.  The ADAMS 
Extraction and Separation Model (AESM) was used as the primary tool to provide nominal and Monte Carlo 
trajectories from aircraft extraction to PTV/CPSS separation through PTV programmer deployment.  The state 
vector of the PTV in the AESM was delivered to Decelerator System Simulation (DSS) as initial conditions to 
provide predictions through vehicle touchdown.  The preflight predictions were comparable to the flight test data.  
Post-test data reconstructions identified a delay in the cut command signal when the smart separation parameters 
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