10 research outputs found

    SARS-CoV-2 disrupts respiratory vascular barriers by suppressing Claudin-5 expression

    Get PDF
    臓器チップ技術を用いて新型コロナウイルスが血管へ侵入するメカニズムを解明 --Claudin-5発現抑制による呼吸器の血管内皮バリア破壊--. 京都大学プレスリリース. 2022-09-22.A study using an organ-on-a-chip reveals a mechanism of SARS-CoV-2 invasion into blood vessels --Disruption of vascular endothelial barrier in respiratory organs by decreasing Claudin-5 expression--. 京都大学プレスリリース. 2022-09-27.In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin–mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2–induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2–induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19
    corecore