47 research outputs found

    Membrane surface-enhanced raman spectroscopy for cholesterol-modified lipid systems: Effect of gold nanoparticle size

    Get PDF
    A gold nanoparticle (AuNP) has a localized surface plasmon resonance peak depending on its size, which is often utilized for surface-enhanced Raman scattering (SERS). To obtain information on the cholesterol (Chol)-incorporated lipid membranes by SERS, AuNPs (5, 100 nm) were first functionalized by 1-octanethiol and then modified by lipids (AuNP@lipid). In membrane surface-enhanced Raman spectroscopy (MSERS), both signals from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and Chol molecules were enhanced, depending on preparation conditions (size of AuNPs and lipid/AuNP ratio). The enhancement factors (EFs) were calculated to estimate the efficiency of AuNPs on Raman enhancement. The size of AuNP100nm@lipid was 152.0 ± 12.8 nm, which showed an surface enhancement Raman spectrum with an EF2850 value of 111 ± 9. The size of AuNP5nm@lipid prepared with a lipid/AuNP ratio of 1.38 × 104 (lipid molecule/particle) was 275.3 ± 20.2 nm, which showed the highest enhancement with an EF2850 value of 131 ± 21. On the basis of fluorescent probe analyses, the membrane fluidity and polarity of AuNP@lipid were almost similar to DOPC/Chol liposome, indicating an intact membrane of DOPC/Chol after modification with AuNPs. Finally, the membrane properties of AuNP@lipid systems were also discussed on the basis of the obtained MSERS signals

    Interaction forces and membrane charge tunability: Oleic acid containing membranes in different pH conditions

    Full text link
    Oleic acid is known to interact with saturated lipid molecules and increase the fluidity of gel phase lipid membranes. In this work, the thermodynamic properties of mixed monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and oleic acid at the air-water interface were determined using Langmuir isotherms. The isotherm study revealed an attractive interaction between oleic acid and DPPC. The incorporation of oleic acid also monotonically decreased the elastic modulus of the monolayer indicative of higher fluidity with increasing oleic acid content. Using the surface force apparatus, intermembrane force-distance profiles were obtained for substrate supported DPPC membranes containing 30mol% oleic acid at pH5.8 and 7.4. Three different preparation conditions resulted in distinct force profiles. Membranes prepared in pH5.8 subphase had a low number of nanoscopic defects ≤1% and an adhesion magnitude of ~0.6mN/m. A slightly higher defect density of 1-4% was found for membranes prepared in a physiological pH7.4 subphase. The presence of the exposed hydrophobic moieties resulted in a higher adhesion magnitude of 2.9mN/m. Importantly, at pH7.4, some oleic acid deprotonates resulting in a long-range electrostatic repulsion. Even though oleic acid increased the DPPC bilayer fluidity and the number of defects, no membrane restructuring was observed indicating that the system maintained a stable configuration

    Functional Hydration Behavior: Interrelation between Hydration and Molecular Properties at Lipid Membrane Interfaces

    No full text
    Water is an abundant commodity and has various important functions. It stabilizes the structure of biological macromolecules, controls biochemical activities, and regulates interfacial/intermolecular interactions. Common aspects of interfacial water can be obtained by overviewing fundamental functions and properties at different temporal and spatial scales. It is important to understand the hydrogen bonding and structural properties of water and to evaluate the individual molecular species having different hydration properties. Water molecules form hydrogen bonds with biomolecules and contribute to the adjustment of their properties, such as surface charge, hydrophilicity, and structural flexibility. In this review, the fundamental properties of water molecules and the methods used for the analyses of water dynamics are summarized. In particular, the interrelation between the hydration properties, determined by molecules, and the properties of molecules, determined by their hydration properties, are discussed using the lipid membrane as an example. Accordingly, interesting water functions are introduced that provide beneficial information in the fields of biochemistry, medicine, and food chemistry

    Hydrolase-Like Activity Provided by Zinc(II) and Oleoyl-Histidine at Liposome Membrane Surface

    No full text
    Carbonic anhydrase (CA) is a hydrolase enzyme possessing an active center composed of three histidines (His), zinc(II) (Zn2+), and a hydration water. Here we report the hydrolase-like catalytic activity provided by the oleoyl-histidine (O-His) modified on liposome membranes. O-His was synthesized by the amide bond between oleic acid and His, and was incorporated into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes. The hydrolysis of p-nitrophenylacetate was promoted by O-His modified DOPC liposomes in the presence of Zn2+. The formation of the active center was revealed by UV resonance Raman spectra. We conclude that the liposome membrane surface can be utilized as a platform for artificial hydrolysis reactions by modifying essential ligands inspired from natural enzymes

    Detection of Nanosized Ordered Domains in DOPC/DPPC and DOPC/Ch Binary Lipid Mixture Systems of Large Unilamellar Vesicles Using a TEMPO Quenching Method

    No full text
    Nanosized ordered domains formed in 1,2-dioleoyl-<i>sn</i>-glycero-3-phosphocholine/1,2-dipalmitoyl-<i>sn</i>-glycero-3-phosphocholine (DOPC/DPPC) and DOPC/cholesterol (Ch) liposomes were characterized using a newly developed (2,2,6,6-tetramethylpiperidin-1-yl)­oxyl (TEMPO) quenching method. The membrane fluidity of the DOPC/DPPC liposomes, evaluated by the use of 1,6-diphenyl-1,3,5-hexatriene (DPH), increased significantly above their phase-transition temperature. The fluorescence spectra of 6-lauroyl-2-dimethylamino naphthalene (Laurdan) indicated the formation of an immiscible ordered phase in the DOPC/DPPC (50/50) liposomal membrane at 30 °C. The analysis of the membrane polarity indicated that the surface of the liquid-disordered phase was hydrated whereas that of the ordered phase was dehydrated. DOPC/DPPC and DOPC/Ch (70/30) liposomes exhibited heterogeneous membranes, indicating that nanosized ordered domains formed on the surface of the DOPC/DPPC liposomes. The size of these nanosized ordered domains was estimated using the TEMPO quenching method. Because TEMPO can quench DPH distributed in the disordered phases, the remaining fluorescence from DPH is proportional to the size of the ordered domain. The domain sizes calculated for DOPC/DPPC (50/50), DOPC/DPPC (25/75), DOPC/Ch (70/30), and DOPC/DPPC/Ch (40/40/20) were 13.9, 36.2, 13.2, and 35.5 Å, respectively

    Effective Concentration of Ionic Liquids for Enhanced Saccharification of Cellulose

    No full text
    In an aqueous enzymatic saccharification using cellulase, the dissolution of crystalline cellulose is one of the rate-limiting steps. Insoluble cellulose powder was preliminarily heat-treated with ionic liquids (ILs), such as [Bmim][Cl] (1-butyl-3-methylimidazolium chloride) and [Amim][Cl] (1-allyl-3-methylimidazolium chloride), which enable the production of soluble cellulose. On the other hand, the presence of ILs leads to a denaturation of enzymes. Using cellulase from Trichoderma viride, the effects of [Bmim][Cl] and [Amim][Cl] in the enzymatic saccharification were compared. The production of glucose was optimized with 5 wt%-ILs, both for [Bmim][Cl] and for [Amim][Cl]. The significant inhibiting effects of ILs (IL concentration &gt;10 wt%) could be due to the denaturation of cellulase, because the peak shifts of intrinsic tryptophan fluorescence were observed in the presence of 7.5 wt%-ILs. To analyze kinetic parameters, the Langmuir adsorption model and the Michaelis-Menten model were employed. The investigation suggests that [Amim][Cl] can provide soluble cellulose more efficiently, and can promote enzymatic saccharification in the IL concentration below 5 wt%
    corecore