158 research outputs found

    Near field interactions in terahertz metamaterials

    Full text link
    Terahertz (THz) frequencies comprise the portion of the electromagnetic spectrum more energetic than microwaves, but less energetic than infrared light. The THz band presents many opportunities for condensed matter physics and optics engineering. From the physics perspective, advances in the generation and detection of THz radiation have opened the door for spectroscopic studies of a range of solid-state phenomena that manifest at THz frequencies. From an engineering perspective, THz frequencies are an under-used spectral region, ripe for the development of new devices. In both cases, the challenge for researchers is to overcome a lack of sources, detectors, and optics for THz light, termed the THz Gap. Metamaterials (MMs), composite structures with engineered index of refraction, n, and impedance, Z, provide one path towards realizing THz optics. MMs are an ideal platform for the design of local EM field distributions, and far-field optical properties. This is especially true at THz frequencies, where fabrication of inclusions is easily accomplished with photolithography. Historically, MM designs have been based around static configurations of resonant inclusions that work only in a narrow frequency band, limiting applications. Broadband and tunable MMs are needed to overcome this limit. This dissertation focuses on creating tunable and controllable MM structures through the manipulation of electromagnetic interactions between MM inclusions. We introduce three novel MM systems. Each system is studied computationally with CST-Studio, and experimentally via THz spectroscopy. First, we look at the tunable transmission spectrum of two coupled split ring resonators (SRRs) with different resonant frequencies. We show that introducing a lateral displacement between the two component resonators lowers the electromagnetic coupling between the SRRs, activating a new resonance. Second, we study an SRR array, coupled to a non-resonant closed ring array. We show that lowering the interaction strength through lateral displacement changes the MM oscillator strength by ~ 40% and electric field enhancement by a factor of 4. Finally, we show that interactions between a superconducting SRR array and a conducting ground plane result in a temperature and field strength dependent MM absorption. The peak absorption changes by ~ 40% with increasing electric field and by ~ 66% with increasing temperature

    Structural Control of Metamaterial Oscillator Strength and Electric Field Enhancement at Terahertz Frequencies

    Full text link
    The design of artificial nonlinear materials requires control over the internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists of a split ring resonator (SRR) array stacked above an array of nonresonant closed conducting rings. An in-plane, lateral shift of a half unit cell between the SRR and closed ring arrays results in a decrease of the MM oscillator strength by a factor of 4 and a 40% change in the amplitude of the resonant electric field enhancement in the SRR capacitive gap. We use terahertz time-domain spectroscopy and numerical simulations to confirm our results and we propose a qualitative inductive coupling model to explain the observed electromagnetic reponse.Comment: 11 pages, 5 figure

    Decoupling Crossover in Asymmetric Broadside Coupled Split Ring Resonators at Terahertz Frequencies

    Get PDF
    We investigate the electromagnetic response of asymmetric broadside coupled split ring resonators (ABC-SRRs) as a function of the relative in-plane displacement between the two component SRRs. The asymmetry is defined as the difference in the capacitive gap widths (\Delta g) between the two resonators comprising a coupled unit. We characterize the response of ABC-SRRs both numerically and experimentally via terahertz time-domain spectroscopy. As with symmetric BC-SRRs (\Delta g=0 \mu m), a large redshift in the LC resonance is observed with increasing displacement, resulting from changes in the capacitive and inductive coupling. However, for ABC-SRRs, in-plane shifting between the two resonators by more than 0.375Lo (Lo=SRR sidelength) results in a transition to a response with two resonant modes, associated with decoupling in the ABC-SRRs. For increasing \Delta g, the decoupling transition begins at the same relative shift (0.375Lo), though with an increase in the oscillator strength of the new mode. This strongly contrasts with symmetric BC-SRRs which present only one resonance for shifts up to 0.75Lo. Since all BC-SRRs are effectively asymmetric when placed on a substrate, an understanding of ABC-SRR behavior is essential for a complete understanding of BC-SRR based metamaterials

    The Electric Word: Democracy, Technology, and the Arts (Book Review)

    Get PDF
    published or submitted for publicatio

    Wireless transfer of power by a 35-GHz metamaterial split-ring resonator rectenna

    Full text link
    Wireless transfer of power via high frequency microwave radiation using a miniature split ring resonator rectenna is reported. RF power is converted into DC power by integrating a rectification circuit with the split ring resonator. The near-field behavior of the rectenna is investigated with microwave radiation in the frequency range between 20-40 GHz with a maximum power level of 17 dBm. The observed resonance peaks match those predicted by simulation. Polarization studies show the expected maximum in signal when the electric field is polarized along the edge of the split ring resonator with the gap and minimum for perpendicular orientation. The efficiency of the rectenna is on the order of 1% for a frequency of 37.2 GHz. By using a cascading array of 9 split ring resonators the output power was increased by a factor of 20

    Early mortality and loss to follow-up in HIV-infected children starting antiretroviral therapy in Southern Africa.

    Get PDF
    BACKGROUND: Many HIV-infected children in Southern Africa have been started on antiretroviral therapy (ART), but loss to follow up (LTFU) can be substantial. We analyzed mortality in children retained in care and in all children starting ART, taking LTFU into account. PATIENTS AND METHODS: Children who started ART before the age of 16 years in 10 ART programs in South Africa, Malawi, Mozambique, and Zimbabwe were included. Risk factors for death in the first year of ART were identified in Weibull models. A meta-analytic approach was used to estimate cumulative mortality at 1 year. RESULTS: Eight thousand two hundred twenty-five children (median age 49 months, median CD4 cell percent 11.6%) were included; 391 (4.8%) died and 523 (7.0%) were LTFU in the first year. Mortality at 1 year was 4.5% [95% confidence interval (CI): 2.8% to 7.4%] in children remaining in care, but 8.7% (5.4% to 12.1%) at the program level, after taking mortality in children and LTFU into account. Factors associated with mortality in children remaining in care included age [adjusted hazard ratio (HR) 0.37; 95% CI: 0.25 to 0.54 comparing > or =120 months with <18 months], CD4 cell percent (HR: 0.56; 95% CI: 0.39 to 0.78 comparing > or =20% with <10%), and clinical stage (HR: 0.12; 95% CI: 0.03 to 0.45 comparing World Health Organization stage I with III/IV). CONCLUSIONS: In children starting ART and remaining in care in Southern Africa mortality at 1 year is <5% but almost twice as high at the program level, when taking LTFU into account. Age, CD4 percentage, and clinical stage are important predictors of mortality at the individual level

    Chemical informatics uncovers a new role for moexipril as a novel inhibitor of cAMP phosphodiesterase-4 (PDE4)

    Get PDF
    PDE4 is one of eleven known cyclic nucleotide phosphodiesterase families and plays a pivotal role in mediating hydrolytic degradation of the important cyclic nucleotide second messenger, cyclic 3′5′ adenosine monophosphate (cAMP). PDE4 inhibitors are known to have anti-inflammatory properties, but their use in the clinic has been hampered by mechanism-associated side effects that limit maximally tolerated doses. In an attempt to initiate the development of better-tolerated PDE4 inhibitors we have surveyed existing approved drugs for PDE4-inhibitory activity. With this objective, we utilised a high-throughput computational approach that identified moexipril, a well tolerated and safe angiotensin-converting enzyme (ACE) inhibitor, as a PDE4 inhibitor. Experimentally we showed that moexipril and two structurally related analogues acted in the micro molar range to inhibit PDE4 activity. Employing a FRET-based biosensor constructed from the nucleotide binding domain of the type 1 exchange protein activated by cAMP, EPAC1, we demonstrated that moexipril markedly potentiated the ability of forskolin to increase intracellular cAMP levels. Finally, we demonstrated that the PDE4 inhibitory effect of moexipril is functionally able to induce phosphorylation of the Hsp20 by cAMP dependent protein kinase A. Our data suggest that moexipril is a bona fide PDE4 inhibitor that may provide the starting point for development of novel PDE4 inhibitors with an improved therapeutic window
    • …
    corecore