2,856 research outputs found

    Child Outcomes and Family Characteristics 1 Year After Severe Inflicted or Noninflicted Traumatic Brain Injury

    Get PDF
    To assess outcomes 1 year after severe traumatic brain injury (TBI) among young children and to compare outcomes between children with inflicted versus noninflicted injuries

    A Population-Based Comparison of Clinical and Outcome Characteristics of Young Children With Serious Inflicted and Noninflicted Traumatic Brain Injury

    Get PDF
    Diagnosing inflicted traumatic brain injury (TBI) in young children is difficult in practice. Comparisons of children with inflicted and non-inflicted TBI may help to identify markers of inflicted TBI. The objective of this study was to compare inflicted and noninflicted TBI in terms of presenting complaints, clinical features, and hospital outcomes

    Longitudinal Follow-up of Families and Young Children With Traumatic Brain Injury

    Get PDF
    To examine the stability of functional outcomes 2 years after injury among children who sustained a traumatic brain injury (TBI) before 2 years of age and to examine the characteristics of the families caring for these children

    Synthetic ozone deposition and stomatal uptake at flux tower sites

    Get PDF
    We develop and evaluate a method to estimate O-3 deposition and stomatal O-3 uptake across networks of eddy covariance flux tower sites where O-3 concentrations and O-3 fluxes have not been measured. The method combines standard micrometeorological flux measurements, which constrain O-3 deposition velocity and stomatal conductance, with a gridded dataset of observed surface O-3 concentrations. Measurement errors are propagated through all calculations to quantify O-3 flux uncertainties. We evaluate the method at three sites with O(3 )flux measurements: Harvard Forest, Blodgett Forest, and Hyytiala Forest. The method reproduces 83 % or more of the variability in daily stomatal uptake at these sites with modest mean bias (21 % or less). At least 95 % of daily average values agree with measurements within a factor of 2 and, according to the error analysis, the residual differences from measured O-3 fluxes are consistent with the uncertainty in the underlying measurements. The product, called synthetic O-3 flux or SynFlux, includes 43 FLUXNET sites in the United States and 60 sites in Europe, totaling 926 site years of data. This dataset, which is now public, dramatically expands the number and types of sites where O-3 fluxes can be used for ecosystem impact studies and evaluation of air quality and climate models. Across these sites, the mean stomatal conductance and O-3 deposition velocity is 0.03-1.0 cm s(-1). The stomatal O-3 flux during the growing season (typically April-September) is 0.5-11.0 nmol O-3 m(-2) s(-1) with a mean of 4.5 nmol O(3 )m(-2) s(-1) and the largest fluxes generally occur where stomatal conductance is high, rather than where O-3 concentrations are high. The conductance differences across sites can be explained by atmospheric humidity, soil moisture, vegetation type, irrigation, and land management. These stomatal fluxes suggest that ambient O-3 degrades biomass production and CO2 sequestration by 20 %-24 % at crop sites, 6 %-29 % at deciduous broadleaf forests, and 4 %-20 % at evergreen needleleaf forests in the United States and Europe.Peer reviewe

    Electron-Ion Recombination on Grains and Polycyclic Aromatic Hydrocarbons

    Get PDF
    With the high-resolution spectroscopy now available in the optical and satellite UV, it is possible to determine the neutral/ionized column density ratios for several different elements in a single cloud. Assuming ionization equilibrium for each element, one can make several independent determinations of the electron density. For the clouds for which such an analysis has been carried out, these different estimates disagree by large factors, suggesting that some process (or processes) besides photoionization and radiative recombination might play an important role in the ionization balance. One candidate process is collisions of ions with dust grains. Making use of recent work quantifying the abundances of polycyclic aromatic hydrocarbon molecules and other grains in the interstellar medium, as well as recent models for grain charging, we estimate the grain-assisted ion recombination rates for several astrophysically important elements. We find that these rates are comparable to the rates for radiative recombination for conditions typical of the cold neutral medium. Including grain-assisted ion recombination in the ionization equilibrium analysis leads to increased consistency in the various electron density estimates for the gas along the line of sight to 23 Orionis. However, not all of the discrepancies can be eliminated in this way; we speculate on some other processes that might play a role. We also note that grain-assisted recombination of H+ and He+ leads to significantly lower electron fractions than usually assumed for the cold neutral medium.Comment: LaTeX(12 pages, 8 figures, uses emulateapj5.sty, apjfonts.sty); submitted to ApJ; corrected typo

    Milk lipid globules: control of their size distribution.

    Full text link

    Discovery of superstrong, fading, iron line emission and double-peaked Balmer lines of the galaxy SDSSJ0952+2143 - the light echo of a huge flare

    Get PDF
    We report the discovery of superstrong, fading, high-ionization iron line emission in the galaxy SDSSJ095209.56+214313.3 (SDSSJ0952+2143 hereafter), which must have been caused by an X-ray outburst of large amplitude. SDSSJ0952+2143 is unique in its strong multiwavelength variability; such a broadband emission-line and continuum response has not been observed before. The strong iron line emission is accompanied by unusual Balmer line emission with a broad base, narrow core and double-peaked narrow horns, and strong HeII emission. These lines, while strong in the SDSS spectrum taken in 2005, have faded away significantly in new spectra taken in December 2007. Comparison of SDSS, 2MASS, GALEX and follow-up GROND photometry reveals variability in the NUV, optical and NIR band. Taken together, these unusual observations can be explained by a giant outburst in the EUV--X-ray band, detected even in the optical and NIR. The intense and variable iron, Helium and Balmer lines represent the ``light echo'' of the flare, as it traveled through circumnuclear material. The outburst may have been caused by the tidal disruption of a star by a supermassive black hole. Spectroscopic surveys such as SDSS are well suited to detect emission-line light echoes of such rare flare events. Reverberation-mapping of these light echoes can then be used as a new and efficient probe of the physical conditions in the circumnuclear material in non-active or active galaxies.Comment: ApJ Letters, 678, L13 (May 1 issue); incl. 4 colour figures. This and related papers on tidal disruption flares also available at http://www.xray.mpe.mpg.de/~skomossa

    The Effects of Loaded Fatigue on Loaded Postural Stability

    Get PDF
    Please download pdf version here

    Rising CO2 and warming reduce global canopy deman for nitrogen

    Get PDF
    Nitrogen (N) limitation has been considered as a constraint on terrestrial carbon uptake in response to rising CO2 and climate change. By extension, it has been suggested that declining carboxylation capacity (Vcmax) and leaf N content in enhanced-CO2 experiments and satellite records signify increasing N limitation of primary production. We predicted Vcmax using the coordination hypothesis, and estimated changes in leaf-level photosynthetic N for 1982–2016 assuming proportionality with leaf-level Vcmax at 25˚C. Whole-canopy photosynthetic N was derived using satellite-based leaf area index (LAI) data and an empirical extinction coefficient for Vcmax, and converted to annual N demand using estimated leaf turnover times. The predicted spatial pattern of Vcmax shares key features with an independent reconstruction from remotely-sensed leaf chlorophyll content. Predicted leaf photosynthetic N declined by 0.27 % yr-1, while observed leaf (total) N declined by 0.2–0.25 % yr-1. Predicted global canopy N (and N demand) declined from 1996 onwards, despite increasing LAI. Leaf-level responses to rising CO2, and to a lesser extent temperature, may have reduced the canopy requirement for N by more than rising LAI has increased it. This finding provides an alternative explanation for declining leaf N that does not depend on increasing N limitation
    • …
    corecore