123 research outputs found
[Editorial] Marketing as an integrator in integrated care
Purpose: Integrated care requires solutions that cannot be delivered without addressing the underlying multidisciplinary problems. Yet with a few notable exceptions, there is a lack of coordination between disciplines, to effectively integrate knowledge. The main aim of this special section is to provide a platform that explicitly coordinates and curates multidisciplinary research aimed at providing a shared understanding and knowledge base that directly addresses the fragmentation in this field, with an explicit focus on the role of Marketing as a key but often neglected partner. We identify four big challenges (Self, Society, Micro Systems and Macro Systems) to which Marketing can contribute, illustrating these potential contributions through the articles and accompanying practitioner commentaries of this special section.
Methodology: Ferguson demonstrates how reflexive introspection can be used, beyond its therapeutic benefits, to bring a deeper understanding of the meaning of illness and treatments from a patient’s perspective. Orazi and Newton establish experimentally the positive impact of collaborative sources on health messaging receptivity. Taiminen, Saramieni and Parkinson survey physicians to evaluate acceptance of/barriers to incorporating digital self-services into overall care delivery. Cruz, Snuggs and Tsarenko utilise interviews to understand the patient’s negotiation of the service labyrinth and fragmentation.
Findings: We demonstrate the scope and flexibility of marketing theories and methods and how these can be applied to the four main challenges of integrated care: Self; Society; Micro Systems; Macro Systems.
Research Implications: We identify directions for future research as a means of stimulating fruitful multidisciplinary partnerships in the four key challenge areas. It is only by collaborating across disciplines that we can really develop and provide insights that inform policy, practitioners, society and consumers on how to future-proof our care services.
Originality/Value: In addition to publishing new research, this special section directly encourages multidisciplinary collaboration between marketing, as a neglected partner, and health/social care disciplines by showcasing the theories and methods that can be used to address our identified four key challenges to integrated care. In a novel approach, practitioner commentaries evaluate the value of each study, placing them in the wider integrated care context and hence pointing out further directions for development
<sup>68</sup>Ga-Bisphosphonates for the Imaging of Extraosseous Calcification by Positron Emission Tomography
Abstract Radiolabelled bisphosphonates (BPs) and [18F]NaF (18F-fluoride) are the two types of radiotracers available to image calcium mineral (e.g. bone), yet only [18F]NaF has been widely explored for the non-invasive molecular imaging of extraosseous calcification (EC) using positron emission tomography (PET) imaging. These two radiotracers bind calcium mineral deposits via different mechanisms, with BPs chelating to calcium ions and thus being non-selective, and [18F]NaF being selective for hydroxyapatite (HAp) which is the main component of bone mineral. Considering that the composition of EC has been reported to include a diverse range of non-HAp calcium minerals, we hypothesised that BPs may be more sensitive for imaging EC due to their ability to bind to both HAp and non-HAp deposits. We report a comparison between the 68Ga-labelled BP tracer [68Ga]Ga-THP-Pam and [18F]NaF for PET imaging in a rat model of EC that develops macro- and microcalcifications in several organs. Macrocalcifications were identified using preclinical computed tomography (CT) and microcalcifications were identified using µCT-based 3D X-ray histology (XRH) on isolated organs ex vivo. The morphological and mineral analysis of individual calcified deposits was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). PET imaging and ex vivo analysis results demonstrated that while both radiotracers behave similarly for bone imaging, the BP-based radiotracer [68Ga]Ga-THP-Pam was able to detect EC more sensitively in several organs in which the mineral composition departs from that of HAp. Our results strongly suggest that BP-based PET radiotracers such as [68Ga]Ga-THP-Pam may have a particular advantage for the sensitive imaging and early detection of EC by being able to detect a wider array of relevant calcium minerals in vivo than [18F]NaF, and should be evaluated clinically for this purpose
68Ga-bisphosphonates for the imaging of extraosseous calcification by positron emission tomography
Radiolabelled bisphosphonates (BPs) and [18F]NaF (18F-fluoride) are the two types of radiotracers available to image calcium mineral (e.g. bone), yet only [18F]NaF has been widely explored for the non-invasive molecular imaging of extraosseous calcification (EC) using positron emission tomography (PET) imaging. These two radiotracers bind calcium mineral deposits via different mechanisms, with BPs chelating to calcium ions and thus being non-selective, and [18F]NaF being selective for hydroxyapatite (HAp) which is the main component of bone mineral. Considering that the composition of EC has been reported to include a diverse range of non-HAp calcium minerals, we hypothesised that BPs may be more sensitive for imaging EC due to their ability to bind to both HAp and non-HAp deposits. We report a comparison between the 68Ga-labelled BP tracer [68Ga]Ga-THP-Pam and [18F]NaF for PET imaging in a rat model of EC that develops macro- and microcalcifications in several organs. Macrocalcifications were identified using preclinical computed tomography (CT) and microcalcifications were identified using µCT-based 3D X-ray histology (XRH) on isolated organs ex vivo. The morphological and mineral analysis of individual calcified deposits was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). PET imaging and ex vivo analysis results demonstrated that while both radiotracers behave similarly for bone imaging, the BP-based radiotracer [68Ga]Ga-THP-Pam was able to detect EC more sensitively in several organs in which the mineral composition departs from that of HAp. Our results strongly suggest that BP-based PET radiotracers such as [68Ga]Ga-THP-Pam may have a particular advantage for the sensitive imaging and early detection of EC by being able to detect a wider array of relevant calcium minerals in vivo than [18F]NaF, and should be evaluated clinically for this purpose
In situ measurements of atmospheric O2 and CO2 reveal an unexpected O2 signal over the tropical Atlantic Ocean
We present the first meridional transects of atmospheric O2 and CO2 over the Atlantic Ocean. We combine these measurements into the tracer atmospheric potential oxygen (APO), which is a measure of the oceanic contribution to atmospheric O2 variations. Our new in situ measurement system, deployed on board a commercial container ship during 2015, performs as well as or better than existing similar measurement systems. The data show small short-term variability (hours to days), a step-change corresponding to the position of the Intertropical Convergence Zone (ITCZ), and seasonal cycles that vary with latitude. In contrast to data from the Pacific Ocean and to previous modeling studies, our Atlantic Ocean APO data show no significant bulge in the tropics. This difference cannot be accounted for by interannual variability in the position of the ITCZ or the Atlantic Meridional Mode Index and appears to be a persistent feature of the Atlantic Ocean system. Modeled APO using the TM3 atmospheric transport model does exhibit a significant bulge over the Atlantic and overestimates the interhemispheric gradient in APO over the Atlantic Ocean. These results indicate that either there are inaccuracies in the oceanic flux data products in the equatorial Atlantic Ocean region, or that there are atmospheric transport inaccuracies in the model, or a combination of both. Our shipboard O2 and CO2 measurements are ongoing and will reveal the long-term nature of equatorial APO outgassing over the Atlantic as more data become available
Failure of A Novel, Rapid Antigen and Antibody Combination Test to Detect Antigen-Positive HIV Infection in African Adults with Early HIV Infection
BACKGROUND: Acute HIV infection (prior to antibody seroconversion) represents a high-risk window for HIV transmission. Development of a test to detect acute infection at the point-of-care is urgent. METHODS: Volunteers enrolled in a prospective study of HIV incidence in four African cities, Kigali in Rwanda and Ndola, Kitwe and Lusaka in Zambia, were tested regularly for HIV by rapid antibody test and p24 antigen ELISA. Five subgroups of samples were also tested by the Determine Ag/Ab Combo test 1) Antigen positive, antibody negative (acute infection); 2) Antigen positive, antibody positive; 3) Antigen negative, antibody positive; 4) Antigen negative, antibody negative; and 5) Antigen false positive, antibody negative (HIV uninfected). A sixth group included serial dilutions from a p24 antigen-positive control sample. Combo test results were reported as antigen positive, antibody positive, or both. RESULTS: Of 34 group 1 samples with VL between 5x105 and >1.5x107 copies/mL (median 3.5x106), 1 (2.9%) was detected by the Combo antigen component, 7 (20.6%) others were positive by the Combo antibody component. No group 2 samples were antigen positive by the Combo test (0/18). Sensitivity of the Combo antigen test was therefore 1.9% (1/52, 95% CI 0.0, 9.9). One false positive Combo antibody result (1/30, 3.3%) was observed in group 4. No false-positive Combo antigen results were observed. The Combo antigen test was positive in group 6 at concentrations of 80 pg/mL, faintly positive at 40 and 20 pg/mL, and negative thereafter. The p24 ELISA antigen test remained positive at 5 pg/mL. CONCLUSIONS: Although the antibody component of the Combo test detected antibodies to HIV earlier than the comparison antibody tests used, less than 2% of the cases of antigen-positive HIV infection were detected by the Combo antigen component. The development of a rapid point-of-care test to diagnose acute HIV infection remains an urgent goal
Modelling collective cell behaviour
The classical mean-field approach to modelling biological systems makes a number of simplifying assumptions which typically lead to coupled systems of reaction-diffusion partial differential equations. While these models have been very useful in allowing us to gain important insights into the behaviour of many biological systems, recent experimental advances in our ability to track and quantify cell behaviour now allow us to build more realistic models which relax some of the assumptions previously made. This brief review aims to illustrate the type of models obtained using this approach
A Modeling Framework to Describe the Transmission of Bluetongue Virus within and between Farms in Great Britain
Recently much attention has been given to developing national-scale micro-simulation models for livestock diseases that can be used to predict spread and assess the impact of control measures. The focus of these models has been on directly transmitted infections with little attention given to vector-borne diseases such as bluetongue, a viral disease of ruminants transmitted by Culicoides biting midges. Yet BT has emerged over the past decade as one of the most important diseases of livestock.We developed a stochastic, spatially-explicit, farm-level model to describe the spread of bluetongue virus (BTV) within and between farms. Transmission between farms was modeled by a generic kernel, which includes both animal and vector movements. Once a farm acquired infection, the within-farm dynamics were simulated based on the number of cattle and sheep kept on the farm and on local temperatures. Parameter estimates were derived from the published literature and using data from the outbreak of bluetongue in northern Europe in 2006. The model was validated using data on the spread of BTV in Great Britain during 2007. The sensitivity of model predictions to the shape of the transmission kernel was assessed.The model is able to replicate the dynamics of BTV in Great Britain. Although uncertainty remains over the precise shape of the transmission kernel and certain aspects of the vector, the modeling approach we develop constitutes an ideal framework in which to incorporate these aspects as more and better data become available. Moreover, the model provides a tool with which to examine scenarios for the spread and control of BTV in Great Britain
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Key questions for modelling COVID-19 exit strategies
Combinations of intense non-pharmaceutical interventions ('lockdowns') were
introduced in countries worldwide to reduce SARS-CoV-2 transmission. Many
governments have begun to implement lockdown exit strategies that allow
restrictions to be relaxed while attempting to control the risk of a surge in
cases. Mathematical modelling has played a central role in guiding
interventions, but the challenge of designing optimal exit strategies in the
face of ongoing transmission is unprecedented. Here, we report discussions from
the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May
2020). A diverse community of modellers who are providing evidence to
governments worldwide were asked to identify the main questions that, if
answered, will allow for more accurate predictions of the effects of different
exit strategies. Based on these questions, we propose a roadmap to facilitate
the development of reliable models to guide exit strategies. The roadmap
requires a global collaborative effort from the scientific community and
policy-makers, and is made up of three parts: i) improve estimation of key
epidemiological parameters; ii) understand sources of heterogeneity in
populations; iii) focus on requirements for data collection, particularly in
Low-to-Middle-Income countries. This will provide important information for
planning exit strategies that balance socio-economic benefits with public
health
- …