59 research outputs found

    Identifying polymorphisms in the Alzheimer's related APP gene using the MinION sequencer

    Get PDF
    The MinION is a bench top sequencer by Oxford nanopore technologies (ONT) that allows long reads of DNA sequence. Few studies have tested whether polymorphisms can be detected using this device. Several polymorphisms within the APP gene were used to test this capability. Library preparation and sequencing were performed using standard ONT protocols for samples harbouring ive different mutations. Alignments to the reference sequence were analysed in MinoTour and basecalls were manually investigated using proportion of reference calls between samples to identify the variants. MinoTour’s algorithm for variant detection was unable to identify the polymorphisms due to high base calling error rate. By calculating the difference in reference basecall proportions along the amplicon, it was possible to identify the polymorphisms above a Bonferroni-corrected threshold (p<1 × 10-4). The MinION has potential for polymorphism detection when comparing samples; however careful interpretation is needed as high base calling error rates can mask the presence of polymorphisms

    Dementia with Lewy Bodies: Genomics, Transcriptomics, and Its Future with Data Science

    Get PDF
    Dementia with Lewy bodies (DLB) is a significant public health issue. It is the second most common neurodegenerative dementia and presents with severe neuropsychiatric symptoms. Genomic and transcriptomic analyses have provided some insight into disease pathology. Variants within SNCA, GBA, APOE, SNCB, and MAPT have been shown to be associated with DLB in repeated genomic studies. Transcriptomic analysis, conducted predominantly on candidate genes, has identified signatures of synuclein aggregation, protein degradation, amyloid deposition, neuroinflammation, mitochondrial dysfunction, and the upregulation of heat-shock proteins in DLB. Yet, the understanding of DLB molecular pathology is incomplete. This precipitates the current clinical position whereby there are no available disease-modifying treatments or blood-based diagnostic biomarkers. Data science methods have the potential to improve disease understanding, optimising therapeutic intervention and drug development, to reduce disease burden. Genomic prediction will facilitate the early identification of cases and the timely application of future disease-modifying treatments. Transcript-level analyses across the entire transcriptome and machine learning analysis of multi-omic data will uncover novel signatures that may provide clues to DLB pathology and improve drug development. This review will discuss the current genomic and transcriptomic understanding of DLB, highlight gaps in the literature, and describe data science methods that may advance the field

    Psychological stress, cognitive decline and the development of dementia in amnestic mild cognitive impairment

    Get PDF
    To determine the relationship between psychological stress with cognitive outcomes in a multi-centre longitudinal study of people with amnestic mild cognitive impairment (aMCI) we assessed three parameters of psychological stress (Recent Life Changes Questionnaire (RLCQ); the Perceived Stress Scale (PSS) and salivary cortisol) and their relationship with rates of cognitive decline over an 18 month follow up period and conversion to dementia over a 5.5 year period. In 133 aMCI and 68 cognitively intact participants the PSS score was higher in the aMCI compared with control group but neither the RLCQ scores nor salivary cortisol measures were different between groups. In the aMCI group the RLCQ and the PSS showed no significant association with cognitive function at baseline, cognitive decline or with conversion rates to dementia but high salivary cortisol levels were associated with RLCQ scores and poorer cognitive function at baseline and lower rates of cognitive decline. No relationship was found between salivary cortisol levels and conversion rate to dementia. We conclude that psychological stress as measured by the RLCQ or PSS was not associated with adverse cognitive outcomes in an aMCI population and hypothesise that this may reflect diminished cortisol production to psychological stress as the disease progresses.</p

    Confirmation that a specific haplotype of the dopamine transporter gene is associated with Combined-Type ADHD

    Get PDF
    Objective: The primary purpose of this study was to confirm the association of a specific haplotype of the dopamine transporter gene and attention deficit hyperactivity disorder (ADHD), which could be one source of the heterogeneity seen across published studies. Method: The authors previously reported the association of ADHD with a subgroup of chromosomes containing specific alleles of two variable-number tandem repeat polymorphisms within the 3' untranslated region and intron 8 of the dopamine transporter gene. They now report on this association in a sample of ADHD combined-type probands. Results: The original observations were confirmed, with an overall odds ratio of 1.4 across samples. Conclusions: These data challenge results of meta-analyses suggesting that dopamine transporter variation does not have an effect on the risk for ADHD, and they indicate that further investigation of functional variation in the gene is required. <br/

    Investigating splicing variants uncovered by next-generation sequencing the Alzheimer’s disease candidate genes, CLU, PICALM, CR1, ABCA7, BIN1, the MS4A locus, CD2AP, EPHA1 and CD33

    Get PDF
    Late onset Alzheimer’s disease (LOAD), the most common cause of late onset dementia, has a strong genetic component. To date, 21 disease-risk loci have been identified through genome wide association studies (GWAS). However, the causative functional variant(s) within these loci are yet to be discovered. This study aimed to identify potential functional splicing mutations in the nine original GWAS-risk genes: CLU, PICALM, CR1, ABCA7, BIN1, the MS4A locus, CD2AP, EPHA1 and CD33. Target enriched next generation sequencing (NGS) was used to resequence the entire genetic region for each of these GWAS-risk loci in 96 LOAD patients and in silico databases were used to annotate the variants for functionality. Predicted splicing variants were further functionally characterised using splicing prediction software and minigene splicing assays. Following in silico annotation, 21 variants were predicted to influence splicing and, upon further annotation, four of these were examined utilising the in vitro minigene assay. Two variants, rs881768 A>G in ABCA7 and a novel variant 11: 60179827 T>G in MS4A6A were shown, in these cell assays, to affect the splicing of these genes. The method employed in the paper successfully identified potential splicing variants in GWAS-risk genes. Further investigation will be needed to understand the full effect of these variants on LOAD risk. However, these results suggest a possible pipeline in order to identify putative functional variants as a result of NGS in disease-associated loci although improvements are needed within the current prediction programme in order to reduce the number of false positives

    Observations of extensive gene expression differences in the cerebellum and potential relevance to Alzheimer's disease

    Get PDF
    Objectives: In order to determine how gene expression is altered in disease it is of fundamental importance that the global distribution of gene expression levels across the disease-free brain are understood and how differences between tissue types might inform tissue choice for investigation of altered expression in disease state. The aim of this pilot project was to use RNA-sequencing to investigate gene expression differences between five general areas of post-mortem human brain (frontal, temporal, occipital, parietal and cerebellum), and in particular changes in gene expression in the cerebellum compared to cortex regions for genes relevant to Alzheimer’s disease, as the cerebellum is largely preserved from disease pathology and could be an area of interest for neuroprotective pathways. Results: General gene expression profiles were found to be similar between cortical regions of the brain, however the cerebellum presented a distinct expression profile. Focused exploration of gene expression for genes associated with Alzheimer’s disease suggest that those involved in the immunity pathway show little expression in the brain. Furthermore some Alzheimer’s disease associated genes display significantly different expression in the cerebellum compared with other brain regions, which might indicate potential neuroprotective measures

    Complement receptor 1 gene (CR1) intragenic duplication and risk of Alzheimer’s disease

    Get PDF
    Single nucleotide variants (SNVs) within and surrounding the complement receptor 1 (CR1) gene show some of the strongest genome-wide association signals with late-onset Alzheimer’s disease. Some studies have suggested that this association signal is due to a duplication allele (CR1-B) of a low copy repeat (LCR) within the CR1 gene, which increases the number of complement C3b/C4b-binding sites in the mature receptor. In this study, we develop a triplex paralogue ratio test assay for CR1 LCR copy number allowing large numbers of samples to be typed with a limited amount of DNA. We also develop a CR1-B allele-specific PCR based on the junction generated by an historical non-allelic homologous recombination event between CR1 LCRs. We use these methods to genotype CR1 and measure CR1-B allele frequency in both late-onset and early-onset cases and unaffected controls from the United Kingdom. Our data support an association of late-onset Alzheimer’s disease with the CR1-B allele, and confirm that this allele occurs most frequently on the risk haplotype defined by SNV alleles. Furthermore, regression models incorporating CR1-B genotype provide a better fit to our data compared to incorporating the SNV-defined risk haplotype, supporting the CR1-B allele as the variant underlying the increased risk of late-onset Alzheimer’s disease

    Screening exons 16 and 17 of the amyloid precursor protein gene in sporadic early-onset Alzheimer's disease

    Get PDF
    Early-onset Alzheimer's disease (EOAD) can be familial (FAD) or sporadic EOAD (sEOAD); both have a disease onset ≤65 years of age. A total of 451 sEOAD samples were screened for known causative mutations in exons 16 and 17 of the amyloid precursor protein (APP) gene. Four samples were shown to be heterozygous for 1 of 3 known causative mutations: p.A713T, p.V717I, and p.V717G; this highlights the importance of screening EOAD patients for causative mutations. Additionally, we document an intronic 6 base pair (bp) deletion located 83 bp downstream of exon 17 (rs367709245, IVS17 83-88delAAGTAT), which has a nonsignificantly increased minor allele frequency in our sEOAD cohort (0.006) compared to LOAD (0.002) and controls (0.002). To assess the effect of the 6-bp deletion on splicing, COS-7 and BE(2)-C cells were transfected with a minigene vector encompassing exon 17. There was no change in splicing of exon 17 from constructs containing either wild type or deletion inserts. Sequencing of cDNA generated from cerebellum and temporal cortex of a patient harboring the deletion found no evidence of transcripts with exon 17 remov

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Mutation analysis of sporadic early-onset Alzheimer's disease using the NeuroX array

    Get PDF
    We have screened sporadic early-onset Alzheimer's disease (sEOAD, n = 408) samples using the NeuroX array for known causative and predicted pathogenic variants in 16 genes linked to familial forms of neurodegeneration. We found 2 sEOAD individuals harboring a known causative variant in PARK2 known to cause early-onset Parkinson's disease; p.T240M (n = 1) and p.Q34fs delAG (n = 1). In addition, we identified 3 sEOAD individuals harboring a predicted pathogenic variant in MAPT (p.A469T), which has previously been associated with AD. It is currently unknown if these variants affect susceptibility to sEOAD, further studies would be needed to establish this. This work highlights the need to screen sEOAD individuals for variants that are more classically attributed to other forms of neurodegeneration
    • …
    corecore