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Abstract: Dementia with Lewy bodies (DLB) is a significant public health issue. It is the second
most common neurodegenerative dementia and presents with severe neuropsychiatric symptoms.
Genomic and transcriptomic analyses have provided some insight into disease pathology. Variants
within SNCA, GBA, APOE, SNCB, and MAPT have been shown to be associated with DLB in re-
peated genomic studies. Transcriptomic analysis, conducted predominantly on candidate genes, has
identified signatures of synuclein aggregation, protein degradation, amyloid deposition, neuroin-
flammation, mitochondrial dysfunction, and the upregulation of heat-shock proteins in DLB. Yet,
the understanding of DLB molecular pathology is incomplete. This precipitates the current clinical
position whereby there are no available disease-modifying treatments or blood-based diagnostic
biomarkers. Data science methods have the potential to improve disease understanding, optimising
therapeutic intervention and drug development, to reduce disease burden. Genomic prediction will
facilitate the early identification of cases and the timely application of future disease-modifying
treatments. Transcript-level analyses across the entire transcriptome and machine learning analysis of
multi-omic data will uncover novel signatures that may provide clues to DLB pathology and improve
drug development. This review will discuss the current genomic and transcriptomic understanding
of DLB, highlight gaps in the literature, and describe data science methods that may advance the field.
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1. Introduction

Dementia is a clinical syndrome that encompasses several neurodegenerative disor-
ders [1]. It is a progressive cognitive and functional decline beyond that which is expected
in typical ageing [1]. Dementia is characterised by the 11th revision of the International
Classification of Diseases as a marked decline in two or more cognitive domains relative to
an individual’s previous cognitive functioning and age [2]. Global estimates suggest that at
least 50 million individuals are currently diagnosed with dementia, and this syndrome was
the seventh leading cause of global mortality in 2019 [3,4]. Dementia is also the leading
global cause of disability and dependency among older individuals [1]. The prevalence
of dementia doubles every 5 years after the age of 65 years [5], and it is projected that
152 million individuals will be living with dementia by 2050 [3]. The economic burden
will also magnify, and it has been suggested that the global cost of dementia has surpassed
USD 1 trillion and is likely to reach USD 2 trillion by 2030 [6,7]. The increasing prevalence,
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coupled with the significant socio-economic impacts, demonstrates that dementia is a
prominent health concern that requires immediate attention.

Dementia with Lewy bodies (DLB) is a common type of neurodegenerative demen-
tia [8], second in prevalence only to Alzheimer’s disease (AD) [9]. Meta-analyses show
that DLB accounts for 4.2% of dementia cases diagnosed in community settings and 7.5%
within secondary care [9]. This is likely a significant underestimate, and neuropathological
examination studies indicate that DLB may account for up to 20% of dementia cases [10].
People with DLB experience a faster rate of cognitive decline, a shorter life expectancy, a
greater cost of care, and a greater prevalence of neuropsychiatric symptoms [11]. DLB has
four core clinical features (fluctuating cognition, recurrent visual hallucinations, rapid eye
movement sleep behaviour disorder (RBD), and spontaneous parkinsonism), of which at
least two are required to provide clinical diagnosis [12].

DLB is a primary synucleinopathy, as α-synuclein aggregation is the key initial step in the
formation of Lewy bodies and Lewy neurites, the pathological hallmarks of DLB [13,14]. In a
pathogenic state, α-synuclein has been shown to aggregate and combine with at least 90 distinct
molecules to form Lewy bodies and Lewy neurites [13,14], which spread throughout the brain
in a prion-like manner [15]. DLB can be separated into three subtypes depending on the
distribution of Lewy pathology within the brain [15]. Brainstem-predominant DLB refers
to Lewy pathology primarily located within the substantia nigra and the locus coeruleus,
and it presents with a greater prevalence of RBD [16]. Neocortical (diffuse) DLB refers to
Lewy pathology within the cerebral cortex, with or without the presence of Lewy bodies
in the brainstem, and it is more closely associated with cognitive decline [16,17]. Limbic
(transitional) DLB refers to pathology within the anterior cingulate and transentorhinal
cortices, and this typically has a longer disease duration [16,18].

However, the process of Lewy body and Lewy neurite formation and its relationship
to disease pathology remains unclear. As such, specific disease-modifying treatments
for DLB are not available, and the typical survival time from diagnosis is approximately
4 years [19,20]. Moreover, the poor molecular understanding of DLB causes inaccurate
diagnosis. Existing diagnosis relies largely upon clinical observations, as there are no
reliable biological fluid-based biomarkers available for DLB. The sensitivity of clinical
diagnoses is estimated to be as low as 25% [21], and recent studies have suggested that
the diagnostic rate can vary two-fold between clinicians [12,21,22]. Current indicative
biomarkers that rely on imaging methods or polysomnography, such as the detection of
reduced dopamine transporter activity in the corpus striatum [23], are promising yet often
not feasible in most mental health settings in the UK [24]. As such, nearly 50% of people
with DLB may remain misdiagnosed as AD or another dementia [24]. There is a clear
need for research that advances the molecular understanding of DLB so that therapeutic
targets and diagnostic biomarkers may be identified to improve clinical diagnosis and
management of DLB.

Genomic and transcriptomic analysis has provided insight into the molecular pathol-
ogy of DLB, and previous reviews have summarised these findings [25–27]. This review
will provide an update on recent analyses within the field, identifying research gaps that
remain, and reveal how more sophisticated data science methodologies may be used to fill
these gaps.

2. The Genetics of DLB

Most genomic association studies within DLB have focussed on candidate genes that
have been implicated within other dementias or synucleinopathies [26]. The first genome-
wide association study (GWAS) within the field, which was conducted in 2017, precipitated
the widespread identification of genetic associations and has facilitated significant advance-
ments in the field [28]. Subsequent GWASs and other genetic investigations have identified
and validated variants that may be implicated in DLB [26,29]. A list of replicated genetic
associations is presented in Table 1.
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Table 1. Genes, with selected variants, that have displayed association with DLB in two or more studies.

Gene Variant Effect Size (95%
Confidence Interval)

Sample Size
(Cases:Controls) Study

SNCA

rs7681440 0.73 (0.66–0.81) 1743:4454 Guerreiro et al. [28]
rs1348224 0.71 (0.61–0.83) 922:971 Guella et al. [30]
rs894280 0.75 (0.67–0.85) 788:2624 Bras et al. [31]
rs2301135 1.40 a 720:6490 Rongve et al. [29]

GBA

rs35749011 2.55 (1.88–3.46) 1743:4454 Guerreiro et al. [28]
“Mutation carrier status” 8.28 (4.78–14.88) 721:1962 Nalls et al. [32]

“Pathogenic GBA mutations” 7.60 (1.80–31.90) 79:391 Tsuang et al. [33]
rs2230288 5.57 a 720:6490 Rongve et al. [29]

APOE

rs429358 2.40 (2.14–2.70) 1743:4454 Guerreiro et al. [28]
rs429358 2.28 a 720:6490 Rongve et al. [29]
rs769449 2.79 (2.40–3.24) 788:2624 Bras et al. [31]

ε4 haplotype 2.50 (2.29–2.70) 922:971 Guella et al. [30]

SNCB
rs11739753 0.63 (0.44–0.90) 172:97 Nishioka et al. [34]

V70M N/A b 33:660 Ohtake et al. [35]

MAPT
H1G haplotype 3.30 (1.34–8.12) 442:2456 Labbé et al. [36]

G86S N/A b 1118:432 Orme et al. [37]
H1 haplotype 1.81 (1.05–3.14) 51:325 Cervera-Carles et al. [38]

a Confidence interval not published. b Investigation identified presence of variant in one or more cases of DLB.

2.1. SNCA

Synucleinopathies, including DLB, are associated with the aggregation of α-synuclein.
The gene for α-synuclein, SNCA (chr4q22), has therefore been researched extensively.
Candidate-gene studies have identified significant associations within the locus, specifically
common intronic variants rs974711 and rs1348224, and the risk of DLB [30,31]. Subsequent
GWASs support this association and discovered additional significant variants, including
two upstream variants in the gene, rs7681440 and rs2301135 [28,29]. Although there are
variants within SNCA that do not associate with DLB [39], the connection between SNCA
and DLB is well established [27,31,39–41].

However, the role of the SNCA variants within DLB pathology is unclear. It has been
hypothesised that these variants increase the propensity of α-synuclein to aggregate and
inhibit membrane binding activity [27]. Further investigation is needed to understand the
functional outcomes of these variants.

2.2. GBA

Variants within the glucosylceramidase beta gene (GBA; chr1q22) have also been
consistently associated with DLB [32,42]. The GBA gene encodes the lysosomal gluco-
sylceramidase enzyme, which is responsible for the degradation of α-synuclein [26,27].
Candidate-gene studies have identified multiple variants, including rare missense variants
rs2230288, rs76763715, and rs368060, that occur in less than 1% of all individuals, which in-
crease the risk of DLB between two- and ten-fold [32,42,43]. Subsequent GWASs validated
these findings and detected additional variants within GBA that significantly associated
with DLB incidence [28,29].

Whilst the link between GBA variants and DLB has been established, the pathogenesis
of these variants is poorly understood [27]. Individuals with GBA variants have been
associated with an earlier onset of DLB and a shorter life expectancy [32]. It has been
hypothesised that GBA variants impede the production of glucosylceramidase, reducing
the degradation of α-synuclein within lysosomes [27]. Without sufficient degradation,
α-synuclein accumulates and aggregates, precipitating DLB pathology [27]. Interestingly,
a recent investigation identified that loss-of-function mutations in GBA were associated
with reduced levels of α-synuclein in cerebrospinal fluid (CSF) [44]. Reduction in CSF
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α-synuclein levels may be attributable to an accumulation of α-synuclein within the brain
due to reduced clearance from the brain parenchyma [44].

2.3. APOE

The apolipoprotein E (APOE) gene, located on chromosome 19q13, is the most repli-
cated genetic association within dementia research and within DLB [26]. The APOE gene is
associated with cholesterol transportation in the brain, as its product combines with lipids
to form lipoproteins [45]. There are three major isoforms of APOE, which are determined
based upon the genotypes of coding single nucleotide polymorphisms (SNPs) rs429358
and rs7412 [45,46]. A recent meta-analysis discovered that 21 out of the 25 studies on
APOE-ε4 and DLB displayed statistically significant associations [26]. The aggregated risk
for DLB in individuals with the APOE-ε4 alleles was nearly three-fold (p < 0.001) [26]. The
meta-analysis primarily included candidate-gene studies, but one GWAS, which discovered
and replicated statistical association, was also included within the meta-analysis [26,28].
Since publication of the meta-analysis, APOE-ε4 has been significantly associated with DLB
in another GWAS and one more candidate-gene study [29,47].

The APOE-ε4 isoform is associated with a greater risk of dementia, and it is con-
sidered to promote the aggregation of amyloid-β (Aβ) [45,48]. Aβ aggregation is a com-
mon pathological feature of several dementias, and it is also detected sporadically within
DLB brains [49,50]. The APOE-ε4 isoform may be associated with DLB through nonamy-
loidogenic mechanisms [51]. Fragments of APOE-ε4 are neurotoxic and may promote
neurodegeneration through disruption to the cytoskeleton and impairment of mitochon-
drial function [51]. Research has also identified that APOE-ε4 promotes synucleinopathies
independent of Aβ, possibly through alterations in lipid metabolism and synaptic func-
tion [52,53]. Given that synucleinopathies are a predominant pathological feature of DLB,
this finding may partly explain the association between APOE-ε4 and DLB.

2.4. SNCB and SNCG

Two paralogs of SNCA with conserved N-terminal domains, SNCB and SNCG, have
been associated with DLB [34]. The SNCB and SNCG genes translate to β-synuclein and
γ-synuclein, respectively, distinct forms of synuclein that were previously thought to not
be associated with DLB [34]. Rare missense variants within SNCB (chr5q35) at codons
70 (V70M) and 123 (P123H) have been detected in unrelated subjects [35]. Authors of the
study did not detect these substitutions in any of the control samples and suggested that the
variants may predispose individuals to DLB [35]. Three intronic SNCB variants also showed
statistical association with DLB when compared to pathologically confirmed controls [34].
Five mutations within SNCG (chr10q23) have also displayed significant association with
DLB [34]. Two of the SNCG variants were intronic, two were upstream mutations, and one,
rs760113, was a missense mutation whereby the alternative allele was protective against
DLB [34]. However, associations within SNCB and SNCG have not been replicated in two
separate GWASs [28,54] and require further investigation.

It has been suggested that β-synuclein is an anti-aggregation agent antagonistic to-
wards α-synuclein, and mutations within SNCB lead to a loss of function [55]. The role
of SNCG is comparatively unclear. γ-synuclein regulates cytoskeletal remodelling and
may influence DLB through this pathway [55], although membrane binding of both β-
synuclein and γ-synuclein has been shown to form inclusion and induce toxicity [56].
Additional research is required to understand the role that these paralogs of SNCA play
within DLB pathology.

2.5. MAPT

The MAPT gene (chr17q21) encodes the microtubule-associated protein tau and has
also been the focus of numerous candidate-gene studies [57–59]. The H1 haplotype, one
of the two most common haplotypes within MAPT, has been associated with DLB [58,59].
Rare missense variants upstream of the repeat region within MAPT, A152T and G86S,
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have also been associated with DLB [37,59]. However, a recent GWAS did not detect a
significant association between the MAPT locus and DLB [28], and a study that included
pathologically diagnosed cases did not detect a significant association between the H1
haplotype and DLB [36].

The MAPT variants likely contribute to the hyperphosphorylation and aggregation
of tau into neurofibrillary tangles. These aggregates are known to precipitate Lewy body
formation and DLB pathology [60,61]. The H1 haplotype refers to the direct orientation of
MAPT, which increases the expression of transcripts with four repeats (4R) [62]. 4R MAPT
transcripts are associated with elevated hyperphosphorylation and aggregation of tau [63].
The A152T variant creates a phosphorylation site that contributes to the hyperphosphoryla-
tion of tau [36,59], whilst the functional consequence of G86S is unknown [37].

2.6. Genetic Associations That Require Validation

There are several other genes that may be associated with DLB. A potential protective
variant within PLCG2 (phospholipase C gamma 2) has been identified, yet this has not
been replicated by subsequent GWASs [28,29,64]. Significant associations between DLB
and variants within CHRFAM7A (CHRNA7-FAM7A fusion protein), SCARB2 (scavenger
receptor class B member 2), BCHE (butyrylcholinesterase), PSEN1 (presenilin 1), and NOS2
(nitric oxide synthase 2) have also been detected, although the evidence for these loci is
conflicting and further replication is required [26,31]. The involvement of genetic variants
within LRRK2 (leucine rich repeat kinase 2) has been suspected, as the gene is implicated in
Parkinson’s disease (PD) pathogenesis, but this evidence is inconclusive [65].

The first GWAS within DLB, published by Guerreiro and colleagues [28], discovered a
significant association for the BCL7C/STX1B (BAF chromatin remodeling complex subunit
BCLC7/syntaxin 1B) loci. This GWAS also identified the GABRB3 (gamma-aminobutyric
acid type A receptor subunit beta3) locus as being significantly associated with DLB,
although no association was detected when the study was limited to include only patho-
logically diagnosed samples [28]. The GWAS also identified suggestive association of the
CNTN1 (contactin 1) locus that did not reach genome-wide significance [28]. Although,
a second GWAS, published in 2019 by Rongve et al. [29], did not validate any of these
findings and identified a novel suggestive association of the ZFPM1 (zinc finger protein,
FOG family member 1) locus. The lack of replication between the two GWASs may be due
to differences in study design. The study by Rongve and colleagues included a substantially
greater number of controls than the previous GWAS (82,035 vs. 4454), but included fewer
cases (828 vs. 1743), of which none were pathologically diagnosed (0% vs. 76%). Validation
with additional pathologically diagnosed cases is required to determine the true association
of these loci.

3. The Transcriptomics of DLB

The study of DLB transcriptomics, which encompasses whole gene expression, tran-
script expression, and alternative splicing, is still a developing field. The published articles
within the area, of which there are over 40 [25], have identified several pathways and genes
of interest that may be pathogenic within DLB, as summarised in Figure 1.

3.1. Synuclein Aggregation

The aggregation of α-synuclein is a key component of DLB pathology. Prior genetic
investigations have identified the involvement of SNCA and SNCB [27], and subsequent
transcriptomic studies have further highlighted the potentially pathophysiological role of
these genes within synuclein aggregation.

Increased SNCA expression has been suspected as a potential cause for α-synuclein
aggregation for some time. A recent review, which analysed 31 studies that predominantly
used quantitative polymerase chain reactions of candidate genes reported that the total
expression of SNCA did not differ in post-mortem DLB brains when compared to con-
trols [25]. Yet, biologically relevant changes of the transcriptome may be being driven at
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a transcript level. Alternative splicing, which is the variation of transcript ratios within a
gene, may hide transcriptomic signatures from gene-level investigations.
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Figure 1. An overview of the dysfunctional pathways within DLB, both intracellular and extracellular,
that have been identified by transcriptomic analysis. The gene expression changes of relevant
genes and transcripts have been included to show how upregulation and downregulation may play
into the dysfunction of each pathway. Green arrows within the transcriptomic changes indicate
an increase in expression. Red arrows within the transcriptomic changes indicate a decrease in
expression. Green arrows combined with red arrows indicate that expression can be upregulated or
downregulated, depending on the brain region. Created with https://app.biorender.com (accessed
on 14 December 2023).

SNCA has three main transcripts that arise from alternative splicing: SNCA-98, SNCA-
112, and SNCA-126 [43,66]. Multiple studies have identified upregulation of SNCA-98 and
SNCA-112 in DLB brains when compared to controls [67–69]. Both SNCA-98 and SNCA-112
have a deletion of exon 5, which causes truncation of the C-terminus [70]. Shortening of the
C-terminus produces variants with greater aggregation propensity [70]. The deletion also
removes negatively charged amino acid residues, which increases the net charge and further
promotes aggregation [70]. The upregulation of SNCA-98 and SNCA-112 may therefore
promote synuclein aggregation. Conversely, SNCA-126 downregulation has been detected
in the prefrontal cortices and peripheral leukocytes of individuals with DLB [69,71]. SNCA-
126 has a deletion of exon 3, which shortens a region primarily involved in oligomerisation
and aggregation [70]. As such, this transcript is associated with decreased synuclein
aggregation [70]. The downregulation of this transcript, combined with the upregulation
of transcripts that promote aggregation, highlights an alternative splicing mechanism that
may trigger synuclein dysfunction, aggregation, and consequent Lewy pathology.

Differential expression analysis of SNCB within DLB has also identified the potentially
pathogenic signatures of individual transcripts. Two transcripts, SNCB-tv1 and SNCB-
tv2, displayed significant downregulation in the frontal and temporal cortices of DLB
cases [72]. Considering β-synuclein is known to prevent α-synuclein aggregation [34],
SNCB downregulation may be associated with the pathology of DLB through the dys-
function of α-synuclein anti-aggregation. Although, SNCB-tv2 also displayed significantly
increased expression in the caudate nucleus within DLB cases [72]. SNCB-tv2 is distinct

https://app.biorender.com
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from SNCB-tv1 as it lacks exon 2, and its upregulation may suggest that this exon causes
gene dysfunction and DLB [72].

3.2. Protein Degredation

DLB is characterised by an accumulation of pathogenic proteins. The removal of such
proteins is a typical process in healthy individuals, whilst DLB is associated with dysfunc-
tional protein degradation. Two protein removal mechanisms, the autophagy lysosomal
pathway (ALP) and the ubiquitin proteosome pathway (UPP), have been implicated in
DLB following transcriptomic analysis [25].

The ALP degrades proteins and macromolecules utilising autophagosomes and lyso-
somes [73]. Target material is engulfed by an autophagosome and fused with a lysosome
that inserts proteases and lipases to initiate degradation [73]. The ALP is thought to be the
only mechanism capable of degrading aggregated proteins [73], and as such is important
in DLB where numerous proteins aggregate into Lewy bodies. The downregulation of
a gene involved within the ALP, GBA, has been observed within the substantia nigra of
DLB brains [74]. Further research has also demonstrated that the associations of GBA
may be driven by expression changes at a transcript level. The expression of GBA-tv5
was found to be significantly downregulated in the temporal cortex of DLB brains, and
downregulation of GBA-tv1 was also found in the caudate nucleus and temporal cortex of
DLB brains that presented with AD-related pathology [75]. GBA translates a key enzyme
within the ALP, and downregulation of the gene and its transcripts likely results in ALP
dysfunction [76]. This may prevent the degradation of aggregated proteins and precipitate
DLB pathology [76].

The UPP is a second protein degradation system that has been implicated within DLB
pathogenesis. The UPP is a mechanism responsible for the degradation of proteins within
cells [77]. In healthy brains, the UPP tags damaged proteins with ubiquitin and facilitates
their removal with proteosomes [77]. Downregulation of UCHL-1 (ubiquitin C-terminal
hydrolase L1), PRKN (parkin RBR E3 ubiquitin protein ligase), SNCAIP (synuclein alpha
interacting protein), and USP9Y (ubiquitin specific peptidase 9 Y-linked), all of which
translate to proteins within the UPP, have been identified in DLB [78–81]. The products
of these genes contribute to protein tagging, protein degradation, and regulation of the
UPP [78–81]. Reduced expression of these genes likely contributes to a dysfunctional UPP
and protein degradation, and precipitates DLB pathogenesis.

3.3. Amyloid Deposition

The presence of Aβ fragments and aggregates is a common feature among neurode-
generative dementias, and individuals with DLB often exhibit amyloid co-pathology [50].
Aβ, which is a product of the amyloid precursor protein (APP), is deposited in over half of
DLB cases [50].

The upregulation of APP transcripts APP-770 and APP-751 have been detected in the
frontal cortices of DLB brains [82]. These transcripts both have a Kunitz protease inhibitory
(KPI) motif and have also been shown to be upregulated in the cerebral cortex of DLB brains
when compared to an APP transcript that lacks a KPI motif, APP-695 [83]. These findings
suggest the involvement of this motif within DLB pathology. The KPI motif is a 57 amino
insert, which inhibits the activity of various proteases and prevent protein degradation [84].
KPI positive APP isoforms have been shown to increase amyloid deposition [84], and their
elevated expression within DLB may explain the presence of amyloid pathology.

Further expression analysis has also implicated the involvement of BACE1 within
amyloid deposition and DLB pathology. BACE1, which is translated to β-secretase [85],
has been found to be significantly upregulated within DLB [86]. The β-secretase enzyme
cleaves APP and initiates Aβ biogenesis [85], and its increased expression highlights a
possible method of amyloid deposition. Additional studies have identified that α-synuclein
promotes β-secretase processing of APP [87], suggesting that there may be a mechanistic
link between α-synuclein aggregation and amyloid deposition.
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3.4. Neuroinflammation

Chronic neuroinflammation has been identified as a prominent mechanism within
several neurodegenerative disorders [88]. Its involvement within DLB is not well estab-
lished, and the evidence from transcriptomic studies is conflicting. Transcriptomic analysis
did not identify evidence of neuroinflammation within the pulvinar of DLB brains [89].
Further post-mortem investigations of the frontal cortex and the anterior cingulate cortex,
and expression analysis of serum extracellular vesicles, have identified downregulation
of neuroinflammation-associated genes, including several interleukins and chemokines
such as IL2 (interleukin 2), IL6 (interleukin 6), and CXCL2 (C-X-C motif chemokine ligand
2) [89–91]. It has been suggested that a downregulation of neuroinflammation-associated
genes may cause neurodegeneration in DLB [25]. Decreased neuroinflammation may
limit the brain’s ability to respond to DLB pathogenesis and increase the vulnerability of
neurons [25].

However, other transcriptomic analyses have identified the increased expression
of genes associated with neuroinflammation in DLB. Upregulation of pro-inflammatory
cytokines, including TNF (tumor necrosis factor) and IL6, has been detected within the
hippocampus and peripheral blood of individuals with DLB [92,93]. Downregulation of cell
survival genes, such as BDNF (brain-derived neurotrophic factor), has also been detected
within the hippocampus [93]. This may lead to neuronal vulnerability and an upregulation
of MHC class II molecular expression that precipitates neuroinflammation [93]. These
findings support the hypothesis that neuroinflammation, and the increased expression of
genes associated with neuroinflammation, is associated with DLB. Neuroinflammation
may induce apoptosis of neurons and interfere with cell signalling, triggering cognitive
decline and protein aggregation within DLB [94].

A recent hypothesis is that neuroinflammation within DLB changes along the disease
course [94]. Neuroinflammation may increase in mild and prodromal DLB and then may
attenuate throughout disease progression [94]. This finding likely explains some of the
variability in current transcriptomic analysis. Longitudinal studies are required to further
investigate the development of cerebral inflammation and gene expression across the
disease course.

3.5. Other Transcriptomic Signatures

Transcriptomic analysis has continued to make significant advancements in under-
standing DLB pathology. Over 1000 DEGs have been identified within people with DLB,
and multiple studies have identified additional pathways and processes that are of interest.

Mitochondrial dysfunction is one such process that has been implicated within DLB
pathology [25]. Upregulation of CDKN2A (cyclin-dependent kinase inhibitor 2A) has been
detected in the prefrontal cortex of DLB brains, and this was correlated with decreased
mitochondrial copy number [95]. CDKN2A is a cell-cycle inhibitor that induces cellular
senescence [95]. Expression of this gene may limit mitochondrial replication and cause
dysfunction through decreased energy production [95]. Further transcriptomic analyses
have identified downregulation of mitochondrial genes MT-ATP8 (mitochondrially en-
coded ATP synthase membrane subunit 8), MT-CO2 (mitochondrially encoded cytochrome
C oxidase II), MT-CO3 (mitochondrially encoded cytochrome C oxidase III), and MT-ND2
(mitochondrially encoded NADH:ubiquinone oxidoreductase) in the leukocytes of individ-
uals with DLB [96] and decreased mitochondrial energy production in brains with Lewy
body pathology [91].

The upregulation of the heat-shock proteins HSP70 and HSP27 has also been detected
within DLB [97,98]. Heat-shock proteins may be involved in the removal of α-synuclein
aggregates, and their upregulation may be a response to DLB pathology [99], or they may
modulate immune response and be implicated in neuroinflammation [100]. Additional
transcriptomic alternations have been discovered within solute carriers involved in synaptic
neurotransmitter clearance, glutamate transport, and cell surface interactions [96,101].
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Alternative splicing is also a process that may have a significant role within DLB
pathology. Splicing of SNCA transcripts has been shown to facilitate synuclein aggrega-
tion [67–70], and a recent investigation also uncovered evidence of widespread dysfunc-
tional alternative splicing within DLB [101]. Feleke and colleagues combined single-cell and
bulk RNA sequencing to demonstrate that variations in transcript ratios are frequent across
cell types within DLB [101]. Additional research is required to identify and investigate the
genes that are alternatively spliced and play a role within DLB pathology.

Transcriptomic analysis has also identified possible biomarkers in the biological fluids
of DLB cases. Analysis of blood mRNA expression within DLB has identified 17 DEGs that,
if replicated, may hold diagnostic biomarker potential [81]. It has also been shown that the
expression levels of SNCA transcripts in blood may be utilised to distinguish between DLB
and other forms of dementia [69]. Further analysis has detected 37 qPCR verified DEGs
in serum small-extracellular vesicles of DLB cases [89], demonstrating additional avenues
for biomarker development. These signatures currently require additional replication and
validation before being utilised as diagnostic biomarkers.

3.6. Transcriptomic Comparison with Other Dementias and Synucleinopathies

Despite overlapping clinical features, the molecular pathology DLB is distinct from
other dementias and synucleinopathies. It is therefore important to identify molecular
signatures that are unique to DLB. A recent post-mortem analysis detected widespread
transcriptomic signatures between the brains of DLB, PD, and Parkinson’s disease dementia
(PDD) cases [101]. The upregulation of APOE was identified within DLB brains when
compared to PD and PDD, suggesting a greater involvement of amyloid pathology [101].
UCHL-1, which translates to a key protein within the UPP, was downregulated when com-
pared to PD and PDD [101]. This finding highlights that UPP dysfunction may play a more
prominent role within DLB pathology. A comparison between DLB and AD blood mRNA
identified 18 DEGs, and subsequent pathway analysis suggested that interferon response
was upregulated in AD [81]. The expression of cholinergic receptors, CHRM1 and CHRM4,
have also been shown to be upregulated in AD when compared to DLB [102]. Further
research has demonstrated that the transcriptomic differences between AD and those with
Lewy pathology is dependent on brain region [103]. Transcriptional dysregulation appears
to correlate with neurodegeneration, and individuals with Lewy pathology are likely to
experience dysregulation in the substantia nigra, whilst cases of AD are more likely to
show dysregulation in the parietal lobe [103]. Further research is warranted to determine
how DLB differs from other dementias and synucleinopathies across the brain region to
improve molecular understanding and facilitate accurate diagnosis.

4. Opportunities for Data Science in DLB

Existing genomic and transcriptomic analyses have greatly improved our understand-
ing of DLB. It has revealed disease pathways such as synuclein aggregation and protein
removal [25], and identified the involvement of genes such as SNCA, APP, and GBA [26].
Yet, numerous research gaps remain. Data science, and the computational analysis and of
large datasets, has the capability to provide insight into these areas. A summary of these
research areas and their available tools is presented in Table 2. Genomic data could be
used to facilitate the early administration of disease-modifying therapeutics. There is also
a demand for more comprehensive transcriptomic analysis that investigates transcript-
level signatures across the entire transcriptome. This, in addition to multi-omic analysis
that combines genomic and transcriptomic data to identify factors hidden from single-
omic analysis, will increase the understanding of DLB pathology and facilitate improved
drug development.
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Table 2. Areas of opportunity for data science in DLB, and an overview of commonly used tools.

Research Area Data Science Tool Description

Genomic Prediction

PLINK [104] Genome analysis toolkit that includes scoring functions.

PRSice-2 [105] Automated scoring package that performs sequential
threshold testing.

LDpred-2 [106] Incorporates linkage disequilibrium within genetic scoring to
improve accuracy.

Lassosum [107] Utilises penalised regression and linkage disequilibrium within
genetic scoring to improve accuracy.

Tensorflow [108] Machine learning system that facilitates application of
supervised models.

RNA Alignment and
Quantification

HISAT2 [109] Alignment tool that utilises hierarchical indexing.
STAR [110] Alignment tool that utilises sequential search models.

FeatureCounts [111] Read summarisation package that counts reads within
aligned data.

Salmon [112] Pseudoalignment package that quantifies reads
without alignment.

Kallisto [113] Pseudoalignment package that quantifies reads
without alignment.

Transcriptome-level
Expression Analysis

edgeR [114] Employs Poisson and empirical Bayes models to calculate
differential expression.

DESeq2 [115] Utilises shrinkage estimation for differential expression analysis.

Cufflinks [116] RNA analysis package that includes Cuffdiff, which assesses
splicing from aligned reads.

Leafcutter [117] Determines differential intron usage within annotation-free
read data.

DRIMSeq [118] Analyses differential transcript usage within annotation-free
read data.

Transcriptome-wide
Association Analysis

PrediXcan [119] Estimates and associates gene expression from cis-acting variants
within a single tissue.

MultiXCan [120] Estimates and associates gene expression from cis-acting variants
within multiple tissues.

BGW-TWAS [121] Estimates and associates gene expression from cis and
trans-acting variants.

MOSTWAS [122] Incorporates multi-omic data and distal variants to estimate and
associate gene expression.

Unsupervised Machine
Learning for Multi-omic

Analysis

MOFA [123] Regression-based method to integrate multiple omic datasets and
identify latent factors.

DIABLO [124] Regression-based method to integrate multiple omic datasets and
identify latent factors.

Similarity Fusion Network [125] Clustering-based model that combines multiple omic datasets to
identify relationships between samples.

Lemon-Tree [126] Network-based technique that incorporates multiple omic
datasets and ensemble methods for network inference.

4.1. Genetic Prediction for Early Case Identification

DLB is a degenerative condition, and disease pathology is currently irreversible. As
such, the disease-modifying therapeutics that are currently in development are focussed
on slowing disease progression [127,128]. There is increasing emphasis on the early identi-
fication of cases so that disease-modifying interventions can be used in a timely manner
when they are developed before the significant progression of pathology. Current clinical
methods that use the presence or absence of symptoms to diagnose cases are not compat-
ible with early intervention. Pathology can begin more than 15 years prior to the onset
of dementia [129], and the average survival time after diagnosis is just over 4 years [20].
Symptomatic identification does not recognise cases early enough to facilitate relevant
disease-modifying therapeutics. Genetic prediction methods, developed by data science,
could be used to identify individuals at risk of DLB before symptoms develop. Genetic
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material is stable, easily obtainable, and cheap to analyse, which suggests that genetic
prediction may become a feasible method of early case identification.

The most common computational technique used in genome-wide prediction is poly-
genic risk score (PRS) analysis [130,131]. PRSs use risk predictions from a training dataset
to estimate individual risk in a test dataset [130]. Within PRS analyses, these two datasets
are termed the base and the target. A base dataset containing the effect scores for SNPs is
constructed from GWAS summary statistics [130]. The target dataset contains the genotype
and disease phenotype information for individuals of interest [130]. The PRS protocol
attributes effect scores from the base dataset to the genotypes within the target dataset and
combines them to produce a cumulative risk score for each individual [130]. The cumulative
scores and phenotypes for the individuals are then compared to determine how accurate
the model is in discriminating between case and control [130]. Typical PRS procedures
apply p-value thresholds to limit the inclusion of variants that will have reduced predictive
accuracy [130].

Genomic prediction has been used extensively within AD with an accuracy of over
80% [131–133]. Yet, the use of genetic prediction within DLB is limited, as sufficiently
powered GWASs have only recently been conducted. One investigation utilised only
GWAS-significant markers to implement PRS analysis within DLB [134]. It demonstrated
that scoring from five variants had a relative risk ratio of 3.22 (95% confidence interval:
1.62–6.40) for DLB and attributed significantly greater risk values to cases when compared
to controls (p < 0.001) [134]. Although, previous analysis within AD has revealed that PRS
accuracy can be increased from 70.0% to 74.1% by including variants beyond the GWAS-
significance threshold [135]. There is a clear requirement for genetic risk analysis of DLB
that utilises variants beyond a GWAS-significance threshold to determine the maximum
accuracy with which cases can be stratified.

Recent evidence indicates that supervised machine learning models can greatly im-
prove the accuracy of genomic prediction when compared to PRSs [136]. A supervised
deep neural network increased predictive accuracy from 61.6% to 67.3% when compared to
typical PRS computational analysis within the genetic data of breast cancer patients [136].
Supervised machine learning models are data-intensive approaches that utilise annotated
training datasets to uncover hidden structures within the data and predict risk within a
test dataset [137]. Conventional approaches, such as support vector machines and con-
volution neural networks, have been used previously for classification problems in other
domains [137]. Although, the large number of features in genetic data creates general
overfitting problems in proposed models, limiting the accuracy of prediction [137].

Future investigations should aim to apply both supervised machine learning and
PRS analysis to assess the accuracy of genetic prediction within DLB. If accurate genetic
prediction can be achieved, this analysis may hold significant value for the future man-
agement of DLB. Disease-modifying treatments, coupled with accurate and early case
identification, may facilitate effective intervention [127,128]. Neflamapimod may progress
to phase III trials in the near future, but the heterogenous nature of DLB still poses a sizeable
challenge [128].

4.2. Transcsriptome-Wide Gene Expression Analysis

The molecular pathology of DLB remains unclear, and the development of disease-
modifying therapeutics has been modest and slow [21]. Focus on previously identified
pathways has yielded inconsistent results, as there is a sizeable proportion of the pathology
yet to discover [21,128]. Existing transcriptomic analysis of DLB has revealed significant
transcript-level alterations, although most of these investigations focussed on candidate
genes and were limited in scope [25,101]. Transcriptome-wide identification of alternatively
spliced genes and differentially expressed transcripts (DETs) has not been conducted. This
analysis may reveal significant transcript-level alterations in novel pathways, which may
increase our understanding of DLB pathology and facilitate improved development of



Cells 2024, 13, 223 12 of 20

disease-modifying therapeutics. Data science provides an opportunity to conduct transcript-
level expression analysis across the entire transcriptome, simultaneously.

Transcriptome-level analysis begins with the quantification of RNA abundance. Fol-
lowing RNA-sequencing and quality control, the base sequences of reads are typically
compared to that of a reference genome to align each read to its genomic location [138].
The abundance of mapped reads at each transcript is then calculated. Recently developed
packages have implemented quasi-alignment, which is a fast and efficient alternative to
previous techniques and removes the need for genome alignment [139]. Quasi-alignment
compares reads to a genome index, and the abundance of each transcript is estimated based
upon the number of overlapping reads [139]. Subsequent DET analysis then compares the
normalised counts of each transcript between study groups to determine the statistical
significance of differential expression [114]. DET analysis typically employs exact tests with
no degrees of freedom and adjusts for transcript length [114]. Alternative splicing analysis
also utilises RNA-abundance calculations but analyses the different ratios of transcript
expression within genes and across conditions [140]. The abundance of each transcript is
calculated and presented as a proportion of quantified transcripts within its gene. Typical
alternative splicing analysis first investigates whether there is significant deviation in pro-
portions between conditions and across all transcripts within the gene [118]. Subsequent
calculations then determine which transcripts are contributing to this finding [118].

Transcript-level DET and alternative splicing analysis has revealed novel molecular
signatures within AD [141,142]. DET analysis revealed over 2000 upregulated and down-
regulated transcripts in asymptomatic and symptomatic AD samples [142]. Alternative
splicing analysis conducted on the same samples identified a further 1200 differentially
spliced events in individuals with AD [142]. Additional splicing analysis in AD revealed
novel differential transcript usage in ADAM10, BIN1, CLU, and TREM2 [141]. It is apparent
that DET and alternative splicing analysis methods have the potential to identify novel
associations, particularly within DLB, which is known to have wide-spread signatures at a
transcript level [101].

Further developments within data science may also accelerate the identification of
transcript-level associations in the near future. Transcriptome-wide association studies
(TWASs) can be used in the absence of transcriptomic data or if existing analysis is under-
powered. This is particularly relevant within DLB research, as existing RNA-sequencing
studies conducted on post-mortem material are yet to include more than 10 DLB sam-
ples [25,101]. A TWAS leverages the significant statistical power of GWASs and public
expression quantitative trait loci (eQTL) databases to predict transcriptomes and asso-
ciate them with disease outcomes [143]. It can either use individual-level data, where the
genotype information of each sample is compared to the eQTL database to estimate and
associate expression at each loci, or it can use summary-level data, where standardised
effect scores from GWASs are multiplied by the predicted gene expression effect for each
variant [143]. Through both forms, TWASs have the potential to identify novel signatures
within disease pathology. It has previously been used to identify the potential involvement
of 50 novel genes within AD [144], and there is hope that its use within DLB may increase
the understanding of disease pathology, facilitating accelerated drug development.

The application of these data science methods, and the transcriptome-wide identifi-
cation of DETs and alternatively spliced genes, will advance the understanding of DLB
pathology. This may identify novel pathogenic pathways and processes that can be tar-
geted for therapeutic intervention. The identification of these targets has the potential
to accelerate drug development and advance the use of disease-modifying therapeutics.
This area represents a discipline with significant promise, and it should be the subject of
increased scientific attention.

4.3. Unsupervised Machine Learning for Multiomics

The unclear understanding of DLB pathology may also be caused by the lack of multi-
omic analysis. DLB is often caused by a combination of domains within the biological
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dogma [145], and analysis that only considers one domain is likely to overlook pathological
components that span multiple omic datasets. For example, genomic alterations may
be significant only in the presence of transcriptomic factors. To date, the genomics and
transcriptomics of DLB samples have been investigated independently, and no studies
have combined the two with the analysis of matched samples. Data science facilitates
unsupervised machine learning for multi-omic analysis, which may provide insight into
DLB and identify novel pathways and molecular signatures. This is likely to improve
the molecular understanding of DLB, potentially reveal therapeutic targets, and facilitate
improved drug development.

Unsupervised machine learning, unlike supervised machine learning, utilises unla-
belled data to reveal hidden associations and structures within datasets [145]. Unsupervised
multi-omic analysis can be categorised into regression-based, clustering-based, or network-
based methods [145]. Regression-based methods identify associations between layers of
omics data to identify latent factors that may be implicated in disease pathology [145].
Regression-based methods typically reduce the complexity of datasets whilst preserving
key biological drivers within the data [123]. These determine the extent to which latent
factors account for variation within the omics datasets [123]. Clustering-based methods
identify groups or modules within omics datasets to identify disease sub-types [145].
They generally create a sample-by-sample similarity matrix for each omics dataset before
fusing networks to combine the matrices and produce a single similarity matrix [125].
Network-based multi-omic methods leverage information from existing datasets to create
networks that depict the functional relationships within the datasets [145]. Network-based
approaches can first utilise weighted gene co-expression analysis to establish gene modules
and nodes [126]. Features from additional omics datasets are then added to provide com-
bined scores for the modules, and gene ontology can be utilised to facilitate enrichment
analysis [126].

Unsupervised multi-omic analysis has been successful at identifying novel associations
in AD and oncology. Genomics, transcriptomics, and other omic datasets have been
combined to identify subtypes of amyloid pathology and key biological nodes within AD
cases [146]. Further analyses have identified novel associations within pathways of amyloid
pathology, neuronal injury, and tau hyperphosphorylation from the CSF of AD cases [147].
Similar analyses within oncology have identified molecular features associated with tumour
invasiveness [148], immunotherapy susceptibility [149], and the subtypes of oncogene
mutations [150]. Emerging methods are also supplementing unsupervised models with
labelled datasets through semi-supervised learning to improve the identification of novel
signatures. Semi-supervised learning has been shown to be cost effective and accessible
and has been successful in mammogram classification [151].

Unsupervised multi-omic analysis has provided insight into the molecular pathology
of other diseases, and it has the potential to do the same within DLB. Future studies
should implement unsupervised machine learning to improve disease understanding and
identify signatures that singular omic analyses have failed to recognise. These findings
may accelerate the development of disease-modifying drugs and facilitate therapeutics that
limit the progression of DLB.

5. Conclusions

DLB is a significant public health issue. The molecular pathology of DLB is unclear, and
additional research is required to facilitate the development of therapeutics and diagnostic
biomarkers. Genomic analysis has identified numerous molecular signatures. Variants
within SNCA, APOE, GBA, SNCB, SNCG, and MAPT have all been associated with DLB [26].
Two GWASs have identified numerous variants that require additional validation [28,29].

Transcriptomic analysis has also identified the involvement of several pathways
and processes. Differentially expressed genes and transcripts have been detected within
pathways such as synuclein aggregation, protein degradation, amyloid deposition, and
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neuroinflammation [25]. Transcriptomic studies have also identified the involvement of
mitochondrial dysfunction and wide-spread alternative splicing [25,101].

Data science and its future use has the potential to provide insight into the research
gaps within DLB. Data science and deep learning methods will facilitate accurate ge-
nomic prediction to stratify individuals with a high risk of DLB. Methods that investigate
transcript-level alterations across the transcriptome can also be utilised to identify im-
portant DETs or alternatively spliced genes that may play a significant role within DLB
pathology. The application of TWASs may detect novel signatures following an increase in
statistical power. The use of multi-omic analysis will detect novel molecular signatures and
advance the understanding of DLB.

Future research should not only focus on the application of these techniques but also
advancement. Machine learning analysis likely holds the most potential. Development of
supervised, semi-supervised, and unsupervised machine learning methods will facilitate
improved genomic prediction for case stratification and the identification of novel molec-
ular signatures that may accelerate drug discovery. This will aid the early detection and
treatment of DLB and may reduce the substantial and ever-increasing disease burden.
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