1,711 research outputs found

    Policy coordination and financial intermediaries

    Get PDF
    Summary of proceedings from the 1986 Fall Academic Conference sponsored by the Federal Reserve Bank of San FranciscoMonetary policy ; Monetary policy - United States ; International economic relations ; Bank supervision ; Financial institutions

    Simultaneous Optical Model Analyses of Elastic Scattering, Breakup, and Fusion Cross Section Data for the 6^{6}He + 209^{209}Bi System at Near-Coulomb-Barrier Energies

    Full text link
    Based on an approach recently proposed by us, simultaneous χ2\chi^{2}-analyses are performed for elastic scattering, direct reaction (DR) and fusion cross sections data for the 6^{6}He+209^{209}Bi system at near-Coulomb-barrier energies to determine the parameters of the polarization potential consisting of DR and fusion parts. We show that the data are well reproduced by the resultant potential, which also satisfies the proper dispersion relation. A discussion is given of the nature of the threshold anomaly seen in the potential

    Structure of unbound neutron-rich 9^{9}He studied using single-neutron transfer

    Get PDF
    The 8He(d,p) reaction was studied in inverse kinematics at 15.4A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of 9He. The well known 16O(d,p)17O reaction, performed here in reverse kinematics, was used as a test to validate the experimental methods. The 9He missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of 9He is located very close to the neutron threshold of 8He and supports the occurrence of parity inversion in 9He.Comment: Exp\'erience GANIL/SPIRAL1/MUST

    A nonlinear mixed-effects modeling approach for ecological data: Using temporal dynamics of vegetation moisture as an example

    Get PDF
    Increasingly, often ecologist collects data with nonlinear trends, heterogeneous variances, temporal correlation, and hierarchical structure. Nonlinear mixed-effects models offer a flexible approach to such data, but the estimation and interpretation of these models present challenges, partly associated with the lack of worked examples in the ecological literature. We illustrate the nonlinear mixed-effects modeling approach using temporal dynamics of vegetation moisture with field data from northwestern Patagonia. This is a Mediterranean-type climate region where modeling temporal changes in live fuel moisture content are conceptually relevant (ecological theory) and have practical implications (fire management). We used this approach to answer whether moisture dynamics varies among functional groups and aridity conditions, and compared it with other simpler statistical models. The modeling process is set out “step-by-step”: We start translating the ideas about the system dynamics to a statistical model, which is made increasingly complex in order to include different sources of variability and correlation structures. We provide guidelines and R scripts (including a new self-starting function) that make data analyses reproducible. We also explain how to extract the parameter estimates from the R output. Our modeling approach suggests moisture dynamic to vary between grasses and shrubs, and between grasses facing different aridity conditions. Compared to more classical models, the nonlinear mixed-effects model showed greater goodness of fit and met statistical assumptions. While the mixed-effects approach accounts for spatial nesting, temporal dependence, and variance heterogeneity; the nonlinear function allowed to model the seasonal pattern. Parameters of the nonlinear mixed-effects model reflected relevant ecological processes. From an applied perspective, the model could forecast the time when fuel moisture becomes critical to fire occurrence. Due to the lack of worked examples for nonlinear mixed-effects models in the literature, our modeling approach could be useful to diverse ecologists dealing with complex data.Fil: Oddi, Facundo José. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miguez, Fernando E.. University of Iowa; Estados UnidosFil: Ghermandi, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Bianchi, Lucas Osvaldo. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garibaldi, Lucas Alejandro. Universidad Nacional de Río Negro. Sede Andina. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Experimental Investigation of the Ne 19 (p,Îł)20Na Reaction Rate and Implications for Breakout from the Hot CNO Cycle

    Get PDF
    The Ne19(p,γ)Na20 reaction is the second step of a reaction chain which breaks out from the hot CNO cycle, following the O15(α,γ)Ne19 reaction at the onset of x-ray burst events. We investigate the spectrum of the lowest proton-unbound states in Na20 in an effort to resolve contradictions in spin-parity assignments and extract reliable information about the thermal reaction rate. The proton-transfer reaction Ne19(d,n)Na20 is measured with a beam of the radioactive isotope Ne19 at an energy around the Coulomb barrier and in inverse kinematics. We observe three proton resonances with the Ne19 ground state, at 0.44, 0.66, and 0.82 MeV c.m. energies, which are assigned 3+, 1+, and (0+), respectively. In addition, we identify two resonances with the first excited state in Ne19, one at 0.20 MeV and one, tentatively, at 0.54 MeV. These observations allow us for the first time to experimentally quantify the astrophysical reaction rate on an excited nuclear state. Our experiment shows an efficient path for thermal proton capture in Ne19(p,γ)Na20, which proceeds through ground state and excited-state capture in almost equal parts and eliminates the possibility for this reaction to create a bottleneck in the breakout from the hot CNO cycle
    • …
    corecore