167 research outputs found

    Casenote: Norton v. Weinberger an Inside Look

    Get PDF

    Casenote: Norton v. Weinberger an Inside Look

    Get PDF

    Serum 25-hydroxy vitamin D: a predictor of macrovascular and microvascular complications in patients with type 2 diabetes

    Get PDF
    Objective People with diabetes frequently develop vascular disease. We investigated the relationship between blood 25-hydroxy vitamin D (25OH-D) concentration and vascular disease risk in type 2 diabetes. Research design and methods The relationships between blood 25OH-D concentration at baseline and the incidence of macrovascular (including myocardial infarction, stroke) and microvascular (retinopathy, nephropathy, neuropathy, and amputation) disease were analysed with Cox proportional-hazards models and logistic regression in an observational study of patients in the 5-year Fenofibrate Intervention and Event Lowering in Diabetes trial. Results 50% of the patients had low vitamin D concentrations, as indicated by median blood 25OH-D concentration of 49nmol/L. These patients with a blood 25OH-D concentration < 50nmol/L had a higher cumulative incidence of macrovascular and microvascular events than those with levels ≥ 50nmol/L. Multivariate analysis, stratified by treatment and adjusted for relevant confounders, identified blood 25OH-D concentration as an independent predictor of macrovascular events. A 50nmol/L difference in blood 25OH-D concentration was associated with a 23% (P=0.007) change in risk of macrovascular complications during the study and further adjustments for seasonality, hs-CRP and physical activity level had little impact. The unadjusted risk of microvascular complications was 18% (P=0.006) higher during the study, though the excess risk declined to 11-14% and lost significance with adjustment for HbA1C, seasonality or physical activity. Conclusions Low blood 25OH-D concentrations are associated with an increased risk of macrovascular and microvascular disease events in type 2 diabetes. However, a causal link remains to be demonstrated

    Metabolic control of arginine and ornithine levels paces the progression of leaf senescence

    Get PDF
    Pools of arginine and ornithine generated during protein degradation can pace the progression of leaf senescence by affecting the TCA cycle, polyamine biosynthesis and the ethylene signaling pathway.Leaf senescence can be induced by stress or aging, sometimes in a synergistic manner. It is generally acknowledged that the ability to withstand senescence-inducing conditions can provide plants with stress resilience. Although the signaling and transcriptional networks responsible for a delayed senescence phenotype, often referred to as a functional stay-green trait, have been actively investigated, very little is known about the subsequent metabolic adjustments conferring this aptitude to survival. First, using the individually darkened leaf (IDL) experimental setup, we compared IDLs of wild-type (WT) Arabidopsis (Arabidopsis thaliana) to several stay-green contexts, that is IDLs of two functional stay-green mutant lines, oresara1-2 (ore1-2) and an allele of phytochrome-interacting factor 5 (pif5), as well as to leaves from a WT plant entirely darkened (DP). We provide compelling evidence that arginine and ornithine, which accumulate in all stay-green contexts-likely due to the lack of induction of amino acids (AAs) transport-can delay the progression of senescence by fueling the Krebs cycle or the production of polyamines (PAs). Secondly, we show that the conversion of putrescine to spermidine (SPD) is controlled in an age-dependent manner. Thirdly, we demonstrate that SPD represses senescence via interference with ethylene signaling by stabilizing the ETHYLENE BINDING FACTOR1 and 2 (EBF1/2) complex. Taken together, our results identify arginine and ornithine as central metabolites influencing the stress- and age-dependent progression of leaf senescence. We propose that the regulatory loop between the pace of the AA export and the progression of leaf senescence provides the plant with a mechanism to fine-tune the induction of cell death in leaves, which, if triggered unnecessarily, can impede nutrient remobilization and thus plant growth and survival

    BROWSE REMOVAL, PLANT CONDITION, AND TWINNING RATES BEFORE AND AFTER SHORT-TERM CHANGES IN MOOSE DENSITY

    Get PDF
    We monitored forage-based indices of intraspecific  competition at changing moose (Alces alces) densities to  gauge short-term, density-dependent environmental feedback and to ultimately improve management of moose for elevated sustained yield. In 4 areas of interior Alaska where moose density recently changed, we evaluated the magnitude of change among 4 browse indices: proportional offtake of current annual growth biomass (OFTK), proportion of current twigs that were browsed (PTB), mean twig diameter at point of browsing (DPB), and proportion of plants with broomed architecture. In 1 area where moose density increased 100% in 6 years following effective predation control, browse removal increased 138% for OFTK, 20% for PTB, and 16–42% for DPB of primary browse species, with a 44% increase in brooming. We also studied 3 areas where moose density declined 31–41% following elevated antlerless harvests of 2–4 years duration. In these areas (with intervals of 3–12 years between browse surveys) we found declines of 30–40% in OFTK, 26–68% in PTB, and 11–37% in DPB, but changes in plant architecture were inconsistent. The proportion of parturient cows with neonate twins did not change between browse surveys, presumably because of a substantial lag time influenced by life history of the dominant reproductive cohorts and little change in browse nutrient content and digestibility. Of the 4 browse indices studied, proportional OFTK most consistently reflected the direction and magnitude of short-term changes in moose density. Area-specific measures of habitat and animal conditions at high moose density provided an objective means for gauging the capacity of the respective ecosystems to support moose and maintain forage plants. We used these measures of winter forage and moose condition to justify implementing harvest strategies and to ultimately reduce high moose densities below levels of strong negative feedback

    HIF prolyl hydroxylase inhibitor FG-4497 enhances mouse hematopoietic stem cell mobilization via VEGFR2/KDR

    Get PDF
    In normoxia, hypoxia-inducible transcription factors (HIFs) are rapidly degraded within the cytoplasm as a consequence of their prolyl hydroxylation by oxygen-dependent prolyl hydroxylase domain (PHD) enzymes. We have previously shown that hematopoietic stem and progenitor cells (HSPCs) require HIF-1 for effective mobilization in response to granulocyte colony-stimulating factor (G-CSF) and CXCR4 antagonist AMD3100/plerixafor. Conversely, HIF PHD inhibitors that stabilize HIF-1 protein in vivo enhance HSPC mobilization in response to G-CSF or AMD3100 in a cell-intrinsic manner. We now show that extrinsic mechanisms involving vascular endothelial growth factor receptor-2 (VEGFR2), via bone marrow (BM) endothelial cells, are also at play. PTK787/vatalanib, a tyrosine kinase inhibitor selective for VEGFR1 and VEGFR2, and neutralizing anti-VEGFR2 monoclonal antibody DC101 blocked enhancement of HSPC mobilization by FG-4497. VEGFR2 was absent on mesenchymal and hematopoietic cells and was detected only in Sca1 endothelial cells in the BM. We propose that HIF PHD inhibitor FG-4497 enhances HSPC mobilization by stabilizing HIF-1α in HSPCs as previously demonstrated, as well as by activating VEGFR2 signaling in BM endothelial cells, which facilitates HSPC egress from the BM into the circulation

    Evolocumab and clinical outcomes in patients with cardiovascular disease

    Get PDF
    BACKGROUND Evolocumab is a monoclonal antibody that inhibits proprotein convertase subtilisin–kexin type 9 (PCSK9) and lowers low-density lipoprotein (LDL) cholesterol levels by approxi - mately 60%. Whether it prevents cardiovascular events is uncertain. METHODS We conducted a randomized, double-blind, placebo-controlled trial involving 27,564 pa - tients with atherosclerotic cardiovascular disease and LDL cholesterol levels of 70 mg per deciliter (1.8 mmol per liter) or higher who were receiving statin therapy. Patients were randomly assigned to receive evolocumab (either 140 mg every 2 weeks or 420 mg monthly) or matching placebo as subcutaneous injections. The primary efficacy end point was the composite of cardiovascular death, myocardial infarction, stroke, hospitalization for un - stable angina, or coronary revascularization. The key secondary efficacy end point was the composite of cardiovascular death, myocardial infarction, or stroke. The median duration of follow-up was 2.2 years. RESULTS At 48 weeks, the least-squares mean percentage reduction in LDL cholesterol levels with evolocumab, as compared with placebo, was 59%, from a median baseline value of 92 mg per deciliter (2.4 mmol per liter) to 30 mg per deciliter (0.78 mmol per liter) (P<0.001). Relative to placebo, evolocumab treatment significantly reduced the risk of the primary end point (1344 patients [9.8%] vs. 1563 patients [11.3%]; hazard ratio, 0.85; 95% confi - dence interval [CI], 0.79 to 0.92; P<0.001) and the key secondary end point (816 [5.9%] vs. 1013 [7.4%]; hazard ratio, 0.80; 95% CI, 0.73 to 0.88; P<0.001). The results were consistent across key subgroups, including the subgroup of patients in the lowest quartile for base - line LDL cholesterol levels (median, 74 mg per deciliter [1.9 mmol per liter]). There was no significant difference between the study groups with regard to adverse events (includ - ing new-onset diabetes and neurocognitive events), with the exception of injection-site reactions, which were more common with evolocumab (2.1% vs. 1.6%). CONCLUSIONS In our trial, inhibition of PCSK9 with evolocumab on a background of statin therapy lowered LDL cholesterol levels to a median of 30 mg per deciliter (0.78 mmol per liter) and reduced the risk of cardiovascular events. These findings show that patients with athero - sclerotic cardiovascular disease benefit from lowering of LDL cholesterol levels below current targets. (Funded by Amgen; FOURIER ClinicalTrials.gov number, NCT01764633.

    Does oculomotor inhibition of return influence fixation probability during scene search?

    Get PDF
    Oculomotor inhibition of return (IOR) is believed to facilitate scene scanning by decreasing the probability that gaze will return to a previously fixated location. This “foraging” hypothesis was tested during scene search and in response to sudden-onset probes at the immediately previous (one-back) fixation location. The latencies of saccades landing within 1º of the previous fixation location were elevated, consistent with oculomotor IOR. However, there was no decrease in the likelihood that the previous location would be fixated relative to distance-matched controls or an a priori baseline. Saccades exhibit an overall forward bias, but this is due to a general bias to move in the same direction and for the same distance as the last saccade (saccadic momentum) rather than to a spatially specific tendency to avoid previously fixated locations. We find no evidence that oculomotor IOR has a significant impact on return probability during scene search
    • …
    corecore