1,095 research outputs found

    Vaults. III. Vault ribonucleoprotein particles open into flower-like structures with octagonal symmetry.

    Get PDF
    The structure of rat liver vault ribonucleoprotein particles was examined using several different staining techniques in conjunction with EM and digestion with hydrolytic enzymes. Quantitative scanning transmission EM demonstrates that each vault particle has a total mass of 12.9 +/- 1 MD and contains two centers of mass, suggesting that each vault particle is a dimer. Freeze-etch reveals that each vault opens into delicate flower-like structures, in which eight rectangular petals are joined to a central ring, each by a thin hook. Vaults examined by negative stain and conventional transmission EM (CTEM) also reveal the flower-like structure. Trypsin treatment of vaults resulted exclusively in cleavage of the major vault protein (p104) and concurrently alters their structure as revealed by negative stain/CTEM, consistent with a localization of p104 to the flower petals. We propose a structural model that predicts the stoichiometry of vault proteins and RNA, defines vault dimer-monomer interactions, and describes two possible modes for unfolding of vaults into flowers. These highly dynamic structural variations are likely to play a role in vault function

    Collaborating with Teachers and Students in Multiliteracies Research: "Se hace camino al andar"

    Get PDF
    Multiliteracies theory, with an emphasis on literacy as diverse and negotiated social practices involving multimodal work, is particularly compatible with collaborative research, as such research enables researchers and teachers to consider students’ multiple perspectives and intentions for their work. This article discusses three collaborative teacher-researcher case studies of teaching and learning in a multiliteracies framework with middle-years students. In these case studies teachers developed literacy projects that explicitly sought to capitalize on students’ out-of-school literacy interests and practices. Collaborative researcher-teacher relationships enabled comfortable research relationships with students throughout 6- to 10-week instructional projects; students’ perspectives throughout the projects enriched both the teaching and the research. These case studies suggest implications regarding collaborative relationships and stances among researchers, teachers, and students.La théorie des littératies multiples, selon laquelle la littératie consiste en des pratiques sociales variées et négociées qui impliquent le travail multimodal, se prête particulièrement bien à la recherche collaborative puisqu’elle permet aux chercheurs et aux enseignants de considérer les multiples perspectives et intentions qu’ont les élèves face à leurs travaux. Cet article présente trois études de cas collaboratives entre enseignants et chercheurs portant sur l’enseignement et l’apprentissage dans un cadre de littératies multiples avec des élèves du secondaire. Les enseignants impliqués ont développé des projets en littératie qui visaient explicitement l’exploitation des intérêts et des pratiques parascolaires des élèves. Les rapports collaboratifs entre les chercheurs et les enseignants ont permis l’établissement de rapports pédagogiques amicaux avec les élèves tout au long des 6 à 10 semaines qu’ont duré les projets académiques. Les perspectives des élèves ont enrichi l’enseignement et la recherche pendant cette période. Des conséquences portant sur les rapports collaboratifs entre chercheurs, enseignants et élèves, et les attitudes qui les caractérisent, se dégagent de ces études de cas

    RNA granules

    Get PDF
    Cytoplasmic RNA granules in germ cells (polar and germinal granules), somatic cells (stress granules and processing bodies), and neurons (neuronal granules) have emerged as important players in the posttranscriptional regulation of gene expression. RNA granules contain various ribosomal subunits, translation factors, decay enzymes, helicases, scaffold proteins, and RNA-binding proteins, and they control the localization, stability, and translation of their RNA cargo. We review the relationship between different classes of these granules and discuss how spatial organization regulates messenger RNA translation/decay

    Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts

    Get PDF
    Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin

    ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains

    Get PDF
    Z-DNA binding protein 1 (ZBP1) belongs to a family of proteins that contain the Zα domain, which binds specifically to left-handed Z-DNA and Z-RNA. Like all vertebrate proteins in the Zα family, it contains two Zα-like domains and is highly inducible by immunostimulation. Using circular dichroism spectroscopy and electrophoretic mobility shift assays we show that both Zα domains can bind Z-DNA independently and that substrate binding is greatly enhanced when both domains are linked. Full length ZBP1 and a prominent splice variant lacking the first Zα domain (ΔZα) showed strikingly different subcellular localizations. While the full length protein showed a finely punctate cytoplasmatic distribution, ZBP1ΔZα accumulated in large cytoplasmic granules. Mutation of residues important for Z-DNA binding in the first Zα domain resulted in a distribution comparable to that of ZBP1ΔZα. The ZBP1ΔZα granules are distinct from stress granules (SGs) and processing bodies but dynamically interacted with these. Polysome stabilization led to the disassembly of ZBP1ΔZα granules, indicating that mRNA are integral components. Heat shock and arsenite exposure had opposing effects on ZBP1 isoforms: while ZBP1ΔZα granules disassembled, full length ZBP1 accumulated in SGs. Our data link ZBP1 to mRNA sorting and metabolism and indicate distinct roles for ZBP1 isoforms

    The 193-Kd Vault Protein, Vparp, Is a Novel Poly(Adp-Ribose) Polymerase

    Get PDF
    Mammalian vaults are ribonucleoprotein (RNP) complexes, composed of a small ribonucleic acid and three proteins of 100, 193, and 240 kD in size. The 100-kD major vault protein (MVP) accounts for >70% of the particle mass. We have identified the 193-kD vault protein by its interaction with the MVP in a yeast two-hybrid screen and confirmed its identity by peptide sequence analysis. Analysis of the protein sequence revealed a region of ∼350 amino acids that shares 28% identity with the catalytic domain of poly(ADP-ribose) polymerase (PARP). PARP is a nuclear protein that catalyzes the formation of ADP-ribose polymers in response to DNA damage. The catalytic domain of p193 was expressed and purified from bacterial extracts. Like PARP, this domain is capable of catalyzing a poly(ADP-ribosyl)ation reaction; thus, the 193-kD protein is a new PARP. Purified vaults also contain the poly(ADP-ribosyl)ation activity, indicating that the assembled particle retains enzymatic activity. Furthermore, we show that one substrate for this vault-associated PARP activity is the MVP. Immunofluorescence and biochemical data reveal that p193 protein is not entirely associated with the vault particle, suggesting that it may interact with other protein(s). A portion of p193 is nuclear and localizes to the mitotic spindle
    • …
    corecore