131 research outputs found

    Statutory Interpretation as Argumentation

    Get PDF
    This chapter proposes a dialectical approach to legal interpretation, consisting of three dimensions: a formalization of the canons of interpretation in terms of argumentation schemes; a dialectical classification of interpretive schemes; and a logical and computational model for comparing the arguments pro and contra an interpretation. The traditional interpretive maxims or canons used in both common and civil law are translated into defeasible patterns of arguments, which can be evaluated through sets of corresponding critical questions. These interpretive argumentation schemes are classified in general categories and a distinction is drawn between schemes supporting and rebutting an interpretation. This framework allows conceiving statutory interpretation as a dialectical procedure consisting in weighing arguments pro and contra an interpretation. This procedure is formalized and represented computationally through tools from formal argumentation systems

    Comparing very low birth weight versus very low gestation cohort methods for outcome analysis of high risk preterm infants

    Full text link
    © 2017 The Author(s). Background: Compared to very low gestational age (<32 weeks, VLGA) cohorts, very low birth weight (<1500 g; VLBW) cohorts are more prone to selection bias toward small-for-gestational age (SGA) infants, which may impact upon the validity of data for benchmarking purposes. Method: Data from all VLGA or VLBW infants admitted in the 3 Networks between 2008 and 2011 were used. Two-thirds of each network cohort was randomly selected to develop prediction models for mortality and composite adverse outcome (CAO: mortality or cerebral injuries, chronic lung disease, severe retinopathy or necrotizing enterocolitis) and the remaining for internal validation. Areas under the ROC curves (AUC) of the models were compared. Results: VLBW cohort (24,335 infants) had twice more SGA infants (20.4% vs. 9.3%) than the VLGA cohort (29,180 infants) and had a higher rate of CAO (36.5% vs. 32.6%). The two models had equal prediction power for mortality and CAO (AUC 0.83), and similarly for all other cross-cohort validations (AUC 0.81-0.85). Neither model performed well for the extremes of birth weight for gestation (<1500 g and ≥32 weeks, AUC 0.50-0.65; ≥1500 g and <32 weeks, AUC 0.60-0.62). Conclusion: There was no difference in prediction power for adverse outcome between cohorting VLGA or VLBW despite substantial bias in SGA population. Either cohorting practises are suitable for international benchmarking

    Structural and mechanical properties of TiB 2 and TiC prepared by self-propagating high-temperature synthesis/dynamic compaction

    Full text link
    Titanium-diboride and titanium-carbide compacts with diameters of 100 mm and thicknesses of 25 mm were fabricated by self-propagating high-temperature synthesis/dynamic compaction (SHS/DC) of the elemental powders. Under the best conditions, the densities were greater than 99% and 96.8% of the theoretical densities for TiB 2 and TiC, respectively. The microhardness, compressive strength, and elastic modulus of the TiB 2 prepared by the SHS/DC method were comparable to reported values for hot-pressed TiB 2 . While the microhardness and elastic modulus of the TiC compacts were comparable to those for hotpressed TiC, the compressive strength was lower due to extensive cracks in the compacts. The TiB 2 prepared using a low-purity boron powder (1–5% carbon impurity) compacted to higher densities and had less cracking than that prepared using a high-purity boron powder (0.2% carbon). This result could have an impact on the cost of producing TiB 2 /TiC structural components by the SHS/DC process.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44732/1/10853_2005_Article_BF01162518.pd

    Biallelic VARS variants cause developmental encephalopathy with microcephaly that is recapitulated in vars knockout zebrafish

    Get PDF
    Aminoacyl tRNA synthetases (ARSs) link specific amino acids with their cognate transfer RNAs in a critical early step of protein translation. Mutations in ARSs have emerged as a cause of recessive, often complex neurological disease traits. Here we report an allelic series consisting of seven novel and two previously reported biallelic variants in valyl-tRNA synthetase (VARS) in ten patients with a developmental encephalopathy with microcephaly, often associated with early-onset epilepsy. In silico, in vitro, and yeast complementation assays demonstrate that the underlying pathomechanism of these mutations is most likely a loss of protein function. Zebrafish modeling accurately recapitulated some of the key neurological disease traits. These results provide both genetic and biological insights into neurodevelopmental disease and pave the way for further in-depth research on ARS related recessive disorders and precision therapies

    Second Order Perturbations in the Randall-Sundrum Infinite Brane-World Model

    Get PDF
    We discuss the non-linear gravitational interactions in the Randall-Sundrum single brane model. If we naively write down the 4-dimensional effective action integrating over the fifth dimension with the aid of the decomposition with respect to eigen modes of 4-dimensional d'Alembertian, the Kaluza-Klein mode coupling seems to be ill-defined. We carefully analyze second order perturbations of the gravitational field induced on the 3-brane under the assumption of the static and axial-symmetric 5-dimensional metric. It is shown that there remains no pathological feature in the Kaluza-Klein mode coupling after the summation over all different mass modes. Furthermore, the leading Kaluza-Klein corrections are shown to be sufficiently suppressed in comparison with the leading order term which is obtained by the zero mode truncation. We confirm that the 4-dimensional Einstein gravity is approximately recovered on the 3-brane up to second order perturbations.Comment: 15 pages, 2 figures, comment and reference added, typos correcte

    Task and context effects in bilingual processing

    No full text
    Psycholinguistics tends to talk about general models for language processing and ignore the effects of task and context. Researchers speak about, for instance, models of word recognition, as if performance would not depend on the actual circumstances in which it occurs. Fortunately, there is an increasing interest in the effects of task demands and context types on language processing. This chapter first describes a model for bilingual word recognition that gives only a rudimentary account of context and task effects, the Bilingual Interactive Activation (BIA) model. To make clear that this model requires adaptation, reaction time studies are discussed, showing the effects of different types of context on bilingual lexical processing. This leads to the extension of the bilingual word recognition model with a system that explicitly takes into account task and context aspects. The adapted model, the BIA+ model, is shown to be compatible not only with reaction time data, but also with data from electrophysiological and neuroimaging techniques

    Grain refinement vs. crystallographic texture: Mechanical anisotropy in a magnesium alloy

    Get PDF
    A magnesium alloy was subjected to severe plastic deformation via an unconventional equal channel angular extrusion route at decreasing temperatures. This method facilitates incremental grain refinement and enhances formability by activating dynamic recrystallization in the initial steps and suppressing deformation twinning. Compression experiments in three orthogonal directions demonstrated high strength levels in the processed sample, up to 350 MPa in yield and 500 MPa in ultimate strengths. Notable flow stress anisotropy is correlated with the processing texture and microstructure
    corecore