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Second order perturbations in the Randall-Sundrum infinite brane-world model

Hideaki KudoH and Takahiro TanaKa
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 5 April 2001; published 26 September 2001

We discuss the nonlinear gravitational interactions in the Randall-Sundrum single brane model. If we naively
write down the four-dimensional effective action integrating over the fifth dimension with the aid of the
decomposition with respect to the eigenmodes of four-dimensional D’Alembertian, the Kaluza-Klein mode
coupling seems to be ill defined. We carefully analyze second order perturbations of the gravitational field
induced on the three-brane under the assumption of the static and axial-symmetric five-dimensional metric. It
is shown that there remains no pathological feature in the Kaluza-Klein mode coupling after the summation
over all different mass modes. Furthermore, the leading Kaluza-Klein corrections are shown to be sufficiently
suppressed in comparison with the leading order term that is obtained by the zero mode truncation. We confirm
that the four-dimensional Einstein gravity is approximately recovered on the three-brane up to second order

perturbations.
DOI: 10.1103/PhysRevD.64.084022 PACS nuniger04.50+h, 98.80.Cq
[. INTRODUCTION and it diverges as we move far away from the brane. A more

precise argument is that the four-dimensional effective action

The possibility that our four-dimensional universe is em-including interaction terms diverges when we attempt to
bedded as a brane in a higher dimensional spacetime hagite it down by integrating over the dependence on the fifth
been extensively discussed recently as the brane world sceirection by using the decomposition of metric perturbations
nario [1-4]. In particular, Randall and Sundrum introducedin terms of the eigenmodes of a four-dimensional
attractive models whose background bulk spacetime is fivep’Alembertian [4]. This fact indicates that we cannot con-
dimensional anti—de Sitter (Adp spacetime. These models struct a four-dimensional effective action for this model in
suggest the possibility of the existence of extra dimensions ihe ysual sense.
a nontrivial form and the possible explanation of the large The above discussion is based on an analysis using the
hierarchy between the Planck scale and the electroweak Scaéf%composition of the mass eigenmodes, which is referred to
[3.4]. as the mode-by-mode analysis. However, it was demon-

Lh? aeha;ior of gravity irgj Lhe RandaII-SundLuﬂT:S) strated that the mode-by-mode analysis is insufficient to deal
models has been investigated by many autlibrsl4). For .with metric perturbations and it is necessary to take into

t_he RS s_mgle brane model, which IS a model W'Fh the.pos"account the contributions from all the KK modes when we
tive tension brane alone, the extension of extra dimensions |§

infinite. Nevertheless, gravity on the three-brane generate iscuss the regularity of linear metric perturba_tions ata point
by the matter field, which is confined on the three-brane ar from the three-brankl1]. Thus the pathological behavior
approximately coir;cides with four-dimensional Einsteinin the nonlinear interaction can be expected to be an artifact

gravity [5—8]. solely due to the mode-by-mode analysis, although it has not

For the RS two-brane model whose bulk space is boundeB€€n Proved yet. Even if the pathological behavior might be
by the positive and negative tension branes, four-dimensiondictitious, there is another question as to whether the four-
Einstein gravity can be recovered on both branes under thdimensional Einstein gravity is recovered when we proceed
approximation of the zero mode truncati®] when we take to higher order perturbations.
the stabilization mechanism of the distance between the two The purpose of this paper is to give a partial answer to the
branes into consideratidil5—17. above two questions. To study the nonlinear behavior of the

Although a large number of studies have been made ogravity, we investigate second order perturbations in the con-
linear perturbations of the metrid8-23, little is known text of the RS single brane model. To simplify the analysis,
about the nonlinear or nonperturbative feature of gravitywe consider the static and axisymmetric configuration, which
[24-30. There is concern about the RS single brane modelmeans that the three-brane metric is spherically symmetric.
In this model, it seems that the nonlinear gravitational inter+ollowing the method developed by Garriga and Tar&ka
action between Kaluza-KleitKK) modes becomes strong we confirm that there is no pathological feature in the KK

mode coupling if we sum up all the mass eigenmodes, and

that the contribution due to the KK mode coupling is suffi-
*Email address: kudoh@yukawa.kyoto-u.ac.jp ciently small compared with the leading order terms, that are
TEmail address: tanaka@yukawa.kyoto-u.ac.jp obtained by the zero mode truncation. Furthermore, the re-
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sult obtained by the zero mode truncation exactly agrees with T” =diag{—p,P,P,P}. (2.2
the one predicted by four-dimensional Einstein graVity. a

This paper is organized as follows. In the next section weTo simplify the analysis, we restrict our consideration to the
first derive the second order perturbation equations in thatatic and axisymmetric spacetime whose axis of symmetry
five-dimensional bulk, and discuss the gauge transformatiofies along they direction, namely, the three-brane metric is
as well as the boundary condition. In Sec. Ill, after giving aspherically symmetric.
brief summary of the behavior of the five-dimensional Green \we denote the perturbed metric By, = gap+ hap. At the
function, which is needed to solve the perturbation equatevel of linear perturbations, it is advantageous to use the
tions, we review the results for linear perturbations to giverandall-Sundrum gauge defined by
their explicit expressions in the notation of the present paper.

In Sec. IV, we analyze second order perturbations of the hyy=h,,=0, (2.3
metric induced on the three-brane. First it is shown that the
four-dimensional Einstein gravity is recovered in the ap- h”M;V=O, h“M=O, (2.9

proximation of the zero mode truncation, and then we prove _ _ _ S
that the remaining contribution due to the Kaluza-Klein becagse the linear perturbation equations in this gauge take
mode coupling can be neglected. Section V is devoted to the simple form(5]

summary. o 5 _
£h,,=[a~?0%W+4;—41"?]h,,=0, (2.5

Il. PERTURBATION EQUATIONS IN THE RS MODEL and all components are decoupled. However, when we con-
sider second order perturbations, we cannot impose the
transverse-traceless conditioi2.4) in addition to (2.3).
Hence, we need to abandon the conditi@¥) in second
order perturbations. As a consequence, the second order per-
ds’=gapdxdx’=a%(y) 7, dx*dx"+dy?,  (2.1)  turbation equations are inevitably coupled.

Here, instead of requirin@®.4), we start with the assump-

with a single positive tensiono(>0) three-brane located at tion of the diagonal form of the metric

The brane-world model proposed by Randall and Sun
drum is composed of the five-dimensional AdS space

y=0. Herea(y)=e """ is the warp factor, and is the o A2 B ) 2
curvature radius of AdS We have denoted the four- ds’=a’—e dt+e dr
dimensional Minkowski metric as;,,. The cosmological +e“rNr2(dp?+sir? 6de?)]+dy?, (2.6

constant on the bulk and the tension of the three-brane are,
respectively, related to the curvature raditss A=—61"2  which is manifestly compatible with the gauge condition
and aso=3/47lGs, whereG;g is the five-dimensional New- (2.3), and does not lose generality under the restriction to the
ton constant. The relation between the five-dimensional angtatic and axial-symmetric case. Furthermore, we can expect
the four-dimensional Newton constants is given B¢  that this assumption is also compatible with the condition
=1G,. We also use the notation,=87Gs. Ordinary matter  (2.4) at the linear order according to the result obtained in
field is supposed to be localized on the brane. Ref. [5]. For the assumed metric for(2.6), the conditions

In this paper, we investigate second order perturbations di2.4) at the linear level become, respectively,
this model induced by nonrelativistic matter on the brane 1)1 (1) n_
whose energy momentum tensor is given by the perfect fluid A H B +2C7 =0, 2.7)

form and

L _ _ _ _ 3,(r2BM)y—2rc®=0, (2.9
After we had submitted the previous version of this paper, we

had the existence of Re[34] pOinted out. In this reference, the Where we have expanded, B, andc to Second Order as
second order metric perturbation in the region far from the star was

investigated using the truncation of the first order metric perturba-

tion at the leading order for the expansion with respect to the dis- Ary)= > A9(ry). 2.9
tance from the star. Since the Einstein equation was not solved in =12

the whole region of the spacetime in that treatment, there remain|§|ereafter we neglect higher order terms without mentioning
an ambiguity in adding some metric perturbations that satisfy the !
homogeneous linear perturbation equation only in the asymptoti!:' . . . . .
region. Nevertheless, one may be able to prove that the dominant Before we start t(,) solve the_ five-dimensional Ems_t_em
part of this remaining ambiguity can be absorbed by the redefinitiorffguation, we would like FO merltlon the boundary Cond'“c,’”
of the mass parameter, and actually our results show that this is tH Y — - An important point which we must mention here is
case. Hence, the recovery of the 4D Einstein gravity in the regiorihat we are to find a solution which is regularyat- . If we

far from the star is to be credited to Rg&4]. On the other hand, allow the violation of regularity at infinity, the dynamics of
what we show in the present paper is the recovery of the 4D Einthe RS brane-world model is not uniquely determined. Then,
stein gravity throughout the whole spacetime including the inside oSuch a model cannot be a candidate for the model that de-
the star, without assuming a specific radial matter distribution. ~ scribes our Universe. Hence, we require that the metric con-
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verges to AdS asymptotically. To guarantee this asymptotic 1

condition, we simply require that the metric functiods B, Quulr.y)= Z(A.(;lt)A,(i)JFBF;lL)B,(i)*' 26,(;14)6,(5))- (2.16
andC go to 0 aty—o. With this choice, the residual gauge

degrees of freedom are completely fixed. Under this con- , o

straint, it is still possible to extend the coordinates throughNote that no other equations for the remaining components
out the bulk maintaining the diagonal form of the metric. We &€ independent.

. . i i J) i -
refer to this gauge choice throughout as the RS gauge be- First we cons_lder the trace pagt”), which can be evalu
cause we see later that the first order quantiéd), B, ated by integrating Eq.2.12. From the requirement of the

andC® in this gauge satisfy both the conditiof&.7) and boundary conditionss™” must go to 0 ay—c. Thus, we

(2.8) [although the quantities at the second order do not satc—)btaln

isfy the transverse-traceless conditi@4)]. y o [y oy
w(J)(r,y):_E(J)f dyrreZy /|J dyle 2y ”ny'
A. 5D Einstein equations in the bulk (2.17

We consider the five-dimensional Einstein equations angvhere we have introduced a symbdf) that is defined by
derive the perturbation equations up to second order. Since&Y=0 ande®=1 to represent the first and second order
the trace of metric perturbations vanishes in the RS gauge &guations in a single expression. As is anticipated above, we

linear order, it is convenient to introduce can see from Eq2.17 that the traceless condition at linear
@ D1 ) @ order is actually satisfied, while that at second order can no
2y=AN+ B +2CH. (2.10  longer be imposed in general.

Let us now turn taB8™Y). Integrating Eq(2.14), we obtain
By using this quantity, the trace of metric perturbations is

expressed as B(J)(r,y):_%f rzA(J)err%e(J)(fdrrz(rz,//(z)),r
r r

~ 1
Vhoo= ) J— (1)y2 (1))2 (1)y2 y
9"h,,=2 2 g =S [(AD) 2 (B2 D)7, +J dyfd”ger _ 2.18

(2.1

As before, the integration constant is fixed by the boundary
Hence the traceless condition at first order is simply given byondition aty— . Now, combined with Eq(2.7), it is easy
Y V=0. to see that Eq(2.8) holds at linear order. Hence, it is con-
The five-dimensional vacuum Einstein equation with thefirmed that our choice of gauge is equivalent to the RS
cosmological term is equivalent to the following set of equa-gauge.
tions for the Ricci tensor: So far, we obtained the relations between the metric func-
tions A, BY andCY. Substituting these into E2.13,
) we obtain a single equation fot ),
—uf

4
Ri+ 5= %, ( i lﬂfﬁ)y) ~Qu=0, (212 [[a?A0]= V(22271 ~S]. (219

The source terms are absent at linear order, as they are com-
posed of a quadratic in linear order quantities. Sigé®

4 1 . . o
R+ |_2: o ng (2‘/f,(j)+4v4,(§)_|A,(j)y =0, Sdefined in Eq(2.15 simplifies as
1
1 S(r.y)= = d(r2PAPB). (2.20
—Ia’ZAA(J))—FSZO, (2.13 r
a

B. Boundary condition

1 1 In the previous subsection, we obtained the master equa-
R/=o- 2 | S(r*BW)  =2(ryl)) + A tion for the metric functions in the bulk up to second order.
2r =iz r ' ' To solve this equation, we need to know the boundary con-
1 dition to be imposed on the three-brane. The boundary con-
+ZyBM_Q, =0 (2.14  dition on the three-brane is specified by Israel’s junction con-
200 Ty oy dition [31]. However, in the RS gauge defined above, the
y-constant surface is, by construction, chosen so that the met-
I ) ric functions go to 0 aty—o. After fixing the y-constant
where A=Z7_ 47 and we have defined surface for largey, coordinates are extended to the region
near the three-brane. Therefore, we can no longer expect that
1 the location of the three-brane coincides with the0 sur-
S(r.y)=—5a(r2APBM) +a?y P AP+ AP, face in general5]. In such coordinates, the junction condi-
r tion is not so trivial. Thus it will be convenient to introduce
(2.19 other coordinateg?, in which the location of the three-brane
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stays al?=0 but the metric form is still kept diagonal. We () (&) | @ ; [¢3) (*lr) 2(1)

associate an overbar with the quantities written in these co- &' (r,y)=¢"(r)— EQ’# €Dy pye’ -1

ordinates, sayA. We denote this choice of coordinates by

the Gaussian normaGN) gauge. By constructiomww:o ydy' — ,

gives the four-metric induced on the three-brane. " fo ?B(l)(r,y | (229
The junction condition on the three-brane is simply writ-

ten in the GN gauge &s o) o)

1 Functions&(r) and &' (r) are integration constants which

() a 2N ()= — kel TY = =87 T ) X appear as a result of integration. We discuss how these
g7 (x)qLa  (YIN,L(X)] KS( mo3T m N (x) functions are determined later.

We denote the difference between the metric in the RS
(at y=0+). (22)  gauge and that in the GN gauge as

As mentioned earlier, we assume the energy-momentum ten- SAQ) — 40 _ 29
sor of the perfect fluid form(2.2. Then, the four- AT =AR(Y) = AR(Y). (2.29

dimensional energy-momentum conservatibt),,,=0 be-  The remaining metric functionsB and ¢ are defined

comes in the same way. Then, the gauge transformations are given
_ by
[p(r)+P(r)]9, A8 (r,00+24,P(r)=0, (2.22
21) (1) (1)
and hence we find tha(r) is a second order quantity. This 6.4 =— TE+ AP+ AV e,
equation represents the force balance between pressure and
gravity acting on the matter field. NURRE) W 0 @
Ta_klng into _acizgunt(;?at?(r) is .sgclond _order ang ex- SBW=_ T§y+2§rr+E(J)[E(yl)gerE(rl)gr_(érr)z
pandingp asp=p'~+p'“’, the explicit junction conditions
for the metric functions become (1)
5 +e?(£))?],
&yZ(J)= K5<—p(J)+ e(J)P), 2
3 . 203) 209 wrﬂ&)7ﬁ” 1(1)
= Zgyg D y r | Zgr
oC |§+r§+e Cy&+C¢ rg

J— — KS
dyBI =g, = — ?p(‘]) (at y=0+). (2.23 (2.28

Now we are ready to derive the equation that determines

The boundary condition obtained above is written iné’(r). We evaluate the identity ,= ¢, + 6y, aty=0. The
terms of the variables in the GN gauge. To interpret the coneXpression for the left hand side is obtained by means of Eq.
ditions (223 in terms of the variables in the RS gauge, We(21n, while the r|ght hand side is evaluated by SubStituting
consider the gauge transformation between these two gaugdzds. (2.23, (2.29, (2.2, and (2.28. After tedious but

which is defined by straightforward computation, we obtain
_~ )
Jap(X) dX2dX°=gap(X) dx?dX?, (2.24 A%’y=%T(J)+ eIN[E(r)— ¢,y|y:0] (2.29

with x2=x2+ £(x). Since hy,, and hy, vanish in both
(1) (2 with
gauges, the infinitesimal gauge transformatigh= £24 £2

between them is restricted to the following form: 1 r (D) 3 @
E(r)zmt[r@y)% fyr/B“)(r',mdr'}—T(W
e X o e . |
y =&Y (r)— _
gry)=&(r)—e 4a2(§,r) , (2.29 “ W oW | @
+E AT+ 5(8,)°+ r—2(§,yr)2- (2.30

20One may think that this equation should have been expressed as The gauge freedom for the radial coordinate in the GN

a_w(;)a;[af%y)_h/w(;)]:_,(s('r‘/ﬂ_ %(yyﬂ-r)\)\)(x_) (at y=0+), gauge has not (Jt;een fixed. Although the simplest choice
because this is a relation for the quantities in the GN gauge. HowMight be to taket" to vanish on the brane, for later conve-
ever, f(x)|,_o=0 is obviously equivalent td(;)W:o:O for any ~ hience we impose the isotropic gauge condition on the three-
functionf. To stress this point, we always use the coordinates withbrane,5=_C aty=0. Rewriting this condition by usin§ and
out overbar hereafter. The only exception is E224). C with the substitution of Eq(2.28, we obtain
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(1) r
r— _ _1r() ! gl — 2 2/\,1

3 287 (2.3 Gxyxy') ==zl aiy)aiy’)

Here we show the result only for the first order, because we » b
2) +1] un(Y)un(y)e mfdm|, (3.1)
do not need the explicit expression fgf in the following 0
discussion. ) . .
J) whereu,,(y) is the mode function, and we have introduced

Once we obtain an explicit expression #¥; it is easy to  the notation
derive the boundary condition for the metric functions in the
RS gauge from the junction condition in the GN gauge R=[x—x'|.
(2.23. In particular, the boundary condition required to solve . o .
the master equatiof2.19 is deduced by substituting the The explicit form of the mode function is given in terms
relations obtained above into the right hand side of the equé2f Bessel functions as

tion A,y=zy+ 6A, . Imposing this boundary condition is _ _
equivalent to adding aS-function source localized on the Un(Y)=Np[Js(mD)Yz(ml/a) = Yy(mh)JI(ml/a)], 3.2

three-brane. The five-dimensional master equat®h9 in- . _ 7y 2 ; )
cluding the boundary condition becomes with Ni=yml/ y2[3y(mD)*+Yy(mD)?]. It is orthonormal

ized as
[L+41715(y)](a2AD) g
[e¢] y ,
=2K52(J)(r)5(y)+6(3)[2a2I*11,//’),—8], zfo gumum;&(m—m ). 3.3
(2.32
where In particular, settingn’=0, we have
SO(r)=kg oy AD|,_g f dyu,=0 (m#0). (3.9
0
2
— J J -1 2
= §P( )+ D[P+ ks "oy (6AP)], o). The first term on the right hand side of E@®.1) is the

contribution from the zero mode whose four-dimensional
(2.33 mass eigenvalue is zeranE0). We denote this part of
Green function byG,. The second term corresponds to the
propagator due to the Kaluza-Klein states which have non-
[L+41718(y)]G(x,y;x",y' ) =8(y—y")83(x—x") zero mass eigenvaluem{0). This term is denoted by .
(2.3  Thus,G=Gy+GC.
For large separatioiR>1, the existence of the factor
the formal solution for the master equati¢h32 is given by~ ¢~™R i the second term in Eq3.1), i.e., G, implies that
the integral ovem is dominated by the contribution from
azA(J)(r,y)ZZKSJ dx'3G(x,y;x’,003 O smallm. When the source is on the three-bragé<0), we
can approximately evaluat€y by expanding Bessel func-
w tions takingml as small, but here the Bessel function with
—Ze(J)f d3x’f dy’'G(x,y;x",y") the argumenml/a is to be kept unexpanded becawsean
0 be exponentially small. Then, the integration ovecan be
performed for the leading power of explicitly. The result is

2 (y :
S(r'y')+ Tfy a?(y")Qyy(r’,y"dy”|. given by[5]

3 2p2 2
(2.35 gy & (22TRT43IT)
G(x,y;x",0) 8l (a2R2+|2)3/2' 3.9

By using the Green function which satisfies

X

The factor 2 in the second term of Hg.35 comes fromZ,
symmetry. In Sec. Il we discuss some basic aspects of th
Green function, and solve the above equation at linear orde,
In Sec. IV we extend our analysis to the second order.

Eor a small separatioR<I, the Green function is dominated
B'y the contribution from modes with larga. In this limit,

the Green function behaves as the ordinary five-dimensional
one~—1/47[R*+12(1—a 1)?].

ll. GREEN FUNCTION AND FIRST ORDER When we discuss second order perturbations later, we use
PERTURBATIONS the following inequalities:
A. Green function )
We need the Green function to evaluate explicitly the for- 0=-G(xy:x',0)< a“(y) (R+1). (3.6
mal solution(2.35. In the static case the Green function is 47IR?

084022-5
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FIG. 1. We calculated numeri-
cally G and a?(R+1)/(4wIR?)
+G to show the inequalities of
(3.6). Since there appears no loga-
rithmic divergence,G and a%(R
+1)/(47IR?)+G are positive
definite at least in the region
shown in the figures.

This inequality is suggested by the asymptotic form of the These are transformed to the isotropic GN gauge by using
Green function, and it is confirmed by numerical calculationsEg. (2.28 with

as shown in Fig. 1.

I P S €Y

2
V==, =m0, 3.1
B. Linear perturbations § 3 §~39 ¢ (3.1)
~ We start with linear perturbations. From B39, A \hich are derived from Eq€2.29 and (2.31), respectively.
's given by Finally, the resulting metric functions turn out to be

aZA(l):ArTKS f A% Gxyix ,0pM(r"). (3.7 — A0~ B0 =CM(r.0~~24(1), (312

. ) . which agree with the result for the four-dimensional Einstein
Suppose that, is the radius of the star. When we CO”S'dergravity.

the metric at a point outside the starr,>1 or far from the
three-brane, we can safely repla@eby the approximation
(3.5 with the relative error ofD(Izlri).3 Furthermore, at a
field point far from the star, the matter distribution can be For later convenience, we guote the result obtained in the
replaced with a point source. Then, we obtald")(r,y)~  preceding section as
—4G,Ma(2a%r?+31?)/3(a%r?+12)%2 By using Eq.(2.18,
we find BA(r,y)~4G,Ma/3a%r?+12, 2 w

On the oghe}?hand,“if we are interested in the metric in-A“(1.0=As +AstAg— TﬁflJ'O dy'a’Qyy, (4.2)
duced on the brane, we can also get0. Even if we con-
sider the interior of the star, the inequality.6) implies that
the contribution to A® from Gy is, at most, of
O((xsM, It )(12Ir2)log(/r,)), whereM, =47 [r?p(r)dr.
Hence, it is small by a factor o®((1%/r2)log(/r,)) com- Az=2K5f dx3G(x,0;x',0)3 ),
pared with the leading term. Then, neglecting the collections
of this order or higher, we obtain

IV. SECOND ORDER PERTURBATIONS

where

°° 1
As=2 [ @ [ dyexon v 2ABr )
0 r '

8
AD(r0~3 ¢, (38
xBW(r',y"),
B(l) ON_EﬁA*l 3.9 4 o0 y'
(rO==3rdh "¢, B9 Ap= l—f d3x'f0 dy’ f G(x,0:x',y")dy" |a*(y’)
where A1 is the inverse of the Laplacian operator, and we XQyy(r',y"). (4.2

have introduced the Newtonian potential
The source tern (?) for Ay is given in Eq.(2.33. The third
p=4m7G,A " p. (3.10 termin Eq.(2.39 is separated into two piece8g and the
last term in Eq(4.1), by performing integration by parts. To
obtain the expression of this last term, we have also used
3Herer, in the denominator is just inserted to adjust the dimen-Jd3x’ [3Gdy’ = [d3x’ [5Gody’ =(1/2)A 1. Here the first
sionality. It can ber instead ofr, . equality follows from Eq(3.4).
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Since we are interested in the metric induced on the three-

brane, we also write down the expression 0P aty=0.
Combining Eq.(2.25, (2.28), (2.29, and(4.1), we obtain

Ky 3 1
2T1@) e Zm 4 2
2T +|,_,—|—2ny

1
BA(r,0=—SAP+ A"

3 (192
B . _1_6(“4” )| +Bsy (at y=0), (4.5
AD(r,0)=As+AgtAg+ 5 AT
where
2 = LS 'y s ) (1)
HTATTE-5(&) A - AT E . 3 d 1@ kg
T 2o g "7 y=o Bzz—z<§,yr>2+fdrr(f,y,>2+ Z A7t
(4.3
x| (3AP+B()s W
Here we note that the last term in Ed.1) is canceled with i i

a term which arises from the gauge transformation.
The terms in the square brackets are evaluated just by B £(38(1)+A(1)) (23 (g
substituting the estimate at first order, and the first tégm P30T Yy
has structure similar to first order perturbations, i.e., the y=0
source term is localized on the brane. Thus, the evaluation Qfe find that the expression is reduced to a closed form writ-

these terms s straightforward. What needs detailed investisp, golely in terms of the quantities on the three-brane except
gation is the evaluation oAs and Aq. Since the source A1 0)

terms of Ag andAq, which are quadratic in the linear per-

turbation quantities, distribute through the five-dimensional

bulk, it is necessary to evaluate a convolution of three five-

dimensional Green functions. In this subsection, we evaluate the metric induced on the
Deferring the estimate of this convolution until Sec. IV B, three-brane at the leading orderlifr, , and show that the

let us turn to the spatial components of the second ordefesult completely agrees with the one predicted by the four-

metric perturbations. Although each spatial component dedimensional Einstein gravity.

ends on the choice c(gf) the gauge invariant combination As for As , since the source term is localized on the three-
P ' gaug brane, we can approximate it as

A. Recovery of the four-dimensional Einstein gravity

~ 15 (2
{B@—5,(rC@)}, g As~2i4ATIEP), (4.6
={B@—5,(rc®)=6B@+4,(r6¢®)},_o which is justified for the same reason explained in evaluating
the induced metric at the linear order.

As mentioned earlier, the point that needs careful analysis
is the computation ohs andAq . To evaluate these terms we
need to evaluate a convolution of the five-dimensional Green

o functions. SinceG is composed of5, and G, the contri-
_rfo dy Q (4.4 bution from these terms is decomposed into several pieces
depending on which combination of three propagators is
used. For example, there is a mode coupling in which a zero
mode propagatoB, propagates the second order source pro-
duced by a product of KK mode contributions. We denote
this mode coupling as

r— r
= |§Af,2’+ 50 0ABD—=5B8@+9,(roc?)
y=0

(2)
does not containé". Here we have used Eq€2.10 and
(2.18 with y=0 to eliminate3 andC. Taking the isotropic

gaugeB@ =1, the left hand side becomesr B%) . Inte-

grating this equation with respect tpowe obtain the expres- [K,K;0],
sion for B?(=C?). Here we note that the terms in the
) @ ] and similar labels are assigned for the other mode couplings,
square brackets in Eq4.4) contain &, from which a term  {gq.
with y integration, Here in the present subsection, we simply neglect the

pieces containing the KK propagat@y . That is, we just
3 [ take into accounfgg o.o; andAgo0.01- The justification of
— I—f dy azny, this approximation is given in the next subsections, where
0 we prove that the neglected piecesAig andAq containing
Gk are actually suppressed by a factor of
arises. Combined with the last term wighntegration in Eq. O((Izlri)log(r* m).
(4.4), this term is reduced to the expression that does not As long as only the contributions from the zero mode are
containy integration. The detail of calculation is explained in concerned, the first order metric functions are all constant in
Appendix A. Here we just quote the final result: y. Since the source term &{, contains differentiation of the
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first order metric functions with respect §9 we find that % _2
Agr0.0:07~0- As for Agg o.0], after they integration, we find fo dya “ G(X1,Y:%2,0)G(X3,Y;%4,0)
that it is reduced to

1
1 = ————u(Rp,+R3y), 4.1

AsmA—lr_zar(rZA’(rl)B(l))_ 4.7 2(477)2R12R34M( 12+ Rag) (4.12

— whereRpg=|Xp—Xg| and

Now that the evaluation ofA®)(r,0) is straightforward. A8 =X~ x|

Substituting the evaluations of the first order quantities pre- o
sented in Sec. Il B, we finally obtain ,u(s)zf dmu,(0)%e™™s, (4.13

0

A2) ~ -1/ (2)_ (1)
A0~ rals(p=2¢pT 1+ 3P), 4.8 The functionu(s) is bounded by

and

0=<p(s)< (4.14

BA(r,0)=C(r,00~ = A [ka(p®—2¢p™) +(4,)°]. 2s(s+1)
(4.9

We begin withAgk k.0; T Agk k:x)- We can derive an
It must be noted thaB in Eq. (4.5) gives only higher order upper bound for the absolute value of each term as
correction ofO(IZKf,,) as is easily shown by using E@.23,
(2.28), (2.29, and(2.31). These results agree with those for
the four-dimensional Einstein gravity, whose brief derivation
is given in Appendix B.

d3x’

‘dy’G(x,O;x’ Y
0

X0 AR (ry,y ) ORI A (1, S
B. Suppression of the KK mode propagation [ " ( v 3y )]rl f3=f
In the preceding subsection the termsAig andAq con-
taining a KK mode propagator were neglected. Here we fd3 !

show that the contribution from these terms is in fact negli- 8mrlrs

gible. We begin with discussing rather general things. As for (1] 4 (1) , 2] 1 (1) 112
As, the termsAgok), Agok;os andAgek o0 Vanish be- X[{Ofl A(ry )+Or1 Ai(rLy")}
cause of the orthogonalit{3.4). Hence the terms to be in- [1] 4 (0 Nl 4 "2
vestigated are(l) AS[K,K;O]r AS[O,K;K]v AS[K,O;K]a and +{Or1 AK (rlay ) Orl AK (rliy )} ]rl:r’a
Agk k:k] - As for Ag, the situation is a little simpler. Recall (4.15
the fact mentioned above that the zero mode contribution in

the first order metric functions isindependent. Thus we can \here A{®) is a part of.4") propagated by the KK mode
say thatAqpo.;«] @and Aqrs o,«) vanish. Therefore, all the propagator, and we have used E2;6). Below, we show that

a%(y")
R? )

terms that we need to consider 18 are(2) Aqk k;0) @d  each term on the right hand side of the above inequality is at

AQIK KiK] - mostO(I%log(r, /1)). We express the appropriate term as
1. Agk k01 Asrk,o:k]» and Agroxk] 1 5 (1] 2]
The source term ofg is rewritten as r*f X [O O v(rir)le —rp=rr, (4.16
1 2 4 (L)) with
r—za,(r ATBY)
Al Bl ] ot
2
2 _ ol B fr* B
_(_ﬁA(l))A(l)} (4.10 _2r1r3f0 drar,2 (1) . drar t(ry)
r1+r2 I‘3+I’4
Each source term has the form of X Jr r ldezfr r Id Raart(R121 Rag),
1712 374
(O 4W) (2] 4 1) (4.11) (4.17)

with O2=1, (r2/r)s,, r2 9%, orr ~3fbdrr2. By using the wherev(r,r;) has been rlewritten by using E@.12. In-
orthonormal conditior(3.3), we obtain the formula troducingU (s)=— [3ds’ [ ds"u(s"),
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2
Kyl
v(ry,fg)=— = f dror,3( )(rz)j drr,2M(ry) Xf dr4r42(1)(r4)J * ARyl 2+ Raa).
2rqr 0 [r3—r4l
X(U(ri+rp+ra+ry) (4.20
—U(Jry—ral+rgtry) —U(ratrat|ra—ry)) Therefore, O v(rl r3) is finite atr;—0.
FU(|ry—ro|+|rs—ra)). (4.18 ForAS[K’O,K] a similar expression is obtained as
. . . - A = 2 dr'r'ToM
By construction,U(0)=0. The inequality(4.14) indicates S[KVO;K]_E el r3 W(re, o, rg) ] =1 rp=rg=r
that
x O AN (r 7y, (4.2
1 I S ith
0=U(s)=3|slog| 1+ | +llog| 1+ (419 Wit

W(rl,rz,rg)Er2J szJ dy’GK(Xl,O;XZ,y’).Af<l)(r3,y’)
As long as ssr,, we find that U(s) is at most 0
O(l log(r, /).
Let us consider the action of differentiation once or twice f drgr, 3¢ )(r4)f dez
with respect ta'; on U. Sincer; appears in the arguments of [ri=ral
U only in the combination of ;+r, or |r;—r5|, the differ- —
<

4r1r

entiation with respect to, can be replaced with that with
respect ta,. Then, integrating by parts, finally the differen-
tiation can be moved so that it acts on the source term
r,SM(r,). As long as the first or second derivative is con-and A§" represents the part ol ) propagated byG,. In
cerned, differentiation o) does not appear as the boundarythe same way, we can show thalgy ox; is at most
term. The same thing is true for the pairrfandr,. Now,  O((1/r2)log(r, /1)).

using the bound fobJ obtained above, we can conclude that

dR3au(R12+ R3a), (4.22

[r3—r4l

OOy (ry,r3) is at mostO(I?log(r, /1)) for ry,ra=r, 2. Aqrk.k:01 @nd Agrk k:k]
Whenrl,rg r., the argument ofx cannot be small. Then Aqk k:0] andAgk k] are also bounded as
we can use the bound u(s)<l/2s?. Therefore,
O[l]O[Z]U(rl,rg) is O(12) for rq,rg=r, . | Aok k.01 + Aok k]|

To conclude that Agk k.01t Agk kk) IS at most 1 R [
O((1%/r2)log(r, /1)), we have to examine whether <ﬁf d3x’Ff0 dya*(y)Qyy(X,y)

[OH] O[i v(r1.r3)lr,=r,r behaves well at—cc and atr

—0 so that the operation ofd®x’R™?(R+1) is well de- 1 s R 0 @)

fined. <QJ d X’F[Vl,y A+ By Bk
First we consider the large limit. Sincer, andr, are

bounded by the radius of the star(R;,+ R34 can be re-

placed withu(r,+r3)~I/(r,+r3)? for larger, and/orrs, +2C,(§)CE<1)|y=o+

and hence(rq,r3)~1%(k4sM,)?/rir5(r,+r3)% The opera-

tion of Ot andOf?! does not make the fall off worse. For

[ avata) pa@

|

+(@B)) BO+2(a% ) )

smallr 4,
(4.23
2
K4l My [
v(rl,rg):r—4J dr2r22(1)(r2)f drar,S3(r,) The first term in the curly brackets is at most
370 0 O((1%/r%)log(r, /1)). By using the relations obtained from
Eq. (2.32,
r3+r4
Xf dRgy| w(ro+Ray)
Ir3=ryl

1
2 g(a“Afy”),y:—a—ZA,4<1>+2K52<1>5(y), (4.24)
+g1u"<r2+R34>+0<r1‘>>

2

.
1+ Ela,22+0(r‘1‘))r22(1)(r2)}

2

4 *

- dr2
rsJo

1 1 2k

(atBWy —g-2Z= 1)_ 275 2y (1

F@'By) y=a?-a - — fdrr sWa(y),
(4.25
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andCWM=—(AD+B1)/2, the second term is reduced to cal symmetry, the gravity induced on the three-brane in the
the form in Eq.(4.16. Therefore, the contribution téq RS single brane model might deviate from the four-
from this term is at mosO((1%/r2)log(r, /) for the same dimensional Einstein gravity in a more general situation.
reason. Hence, it would be necessary to develop a more complete
proof of the coincidence including all higher order terms.
V. SUMMARY Altho_ugh We_did not discuss the RS two b_rane mode_l, it i_s
also interesting to study the post-Newtonian correction in
In this paper we developed second order perturbations ithis model. The analysis is now in progress and will be re-
the RS single brane model, restricting the configuration tgorted soon in a separate paper.
the static axisymmetric one. From the five-dimensional Ein-
stein equations, we derived the master equations for second ACKNOWLEDGMENTS
order perturbations. At the level of linear perturbations, we
can use the RS gauge, in which all perturbation equations are H.K. would like to thank Takashi Nakamura and Hideo
decoupled. Since the transverse-traceless condition cannot k@dama for informative comments and discussion. We
imposed on the second order, the second order perturbativeould also like to thank V. F. Mukhanov for informing us
equations are inevitably coupled. As we have shown, howabout Ref.[34]. This work is supported by the Monbuka-
ever, the four-dimensional spatial components of the secongakusho Grant-in-Aid No. 1270154.
order metric function8(® and C® turned out to be con-

cisely represented by the temporal compondft’ with the APPENDIX A: DERIVATION OF B®
first order metric functions. Therefore, the problem was re- ) _
duced to solving a single differential equation f¢f%). Once As was mentioned in the text below Eg.4), the expres-

we solve for 4@, the other metric function® andc(®  sion given in the last line of Eq4.4) contains the terms with

follow from it. Further, to discuss the metric induced on theY integration. They are explicitly written as
three-brane, we introduced the GN gauge in which a hyper- 3 oo 1 .

surface with constant fifth-coordinate coincides with the lo- -1 2 2

cation of the three-brane. we gave the second order gauge = ( | fo dYaQyyt 29 fo dyr er>- A
transformations between the RS gauge and the GN gauge

explicitly. (2)

Based on this formulation, we first discussed the zergrhe first integral comes frong” contained ins.A®?), 5B,
mode truncation for second order perturbations. It wagindSC(?). In obtaining the expressio@.5) from (4.4), how
shown that the metric induced on the three-brane evaluatel@ reduce these terms will be the only nontrivial manipula-
by using the approximation of the zero mode truncation extion. The rest of the computation is slightly complicated but
actly agrees with that for the four-dimensional Einstein grav-a2lmost straightforward.
ity. To rewrite the first integral, we use the relation

Next, we evaluated the contribution to the metric func-
tions from the KK modes. Since the mode-by-mode analysis
shows a pathological feature even at the level of linear per-
turbations, it is necessary to sum up all the mass eigenvalues
to handle the KK mode interactions. Performing such an +2(a4C,(§))2]}
analysis, we have confirmed that the correction due to the
KK mode coupling on the induced metric is suppressed by a
factor ofO((Izlri)Iog(r* /), and there appears no patho-
logical behavior. We therefore conclude that second order
perturbations in the RS single brane model behave well and x(a*A§)) y+ 3B+ A0 @B 1,
the result basically agrees with the prediction by four-
dimensional Einstein gravity. The relative order of the cor-where we have used the traceless conditT(Si"Pf —(A_(l)
rection isO((1%/r2)log(r, /1)). In the language of the post- +BM)/2. On the other hand, the second part is rewritten as
Newtonian (PN) analy(\;,;s of th(?) four-dimensional Einé,;[ein 1 1 1
gravity, the order ofd(® and 3} is 1PN, and that of3 T 4" W) r@) (1)
is 2PN. According to the parametrized post-Newtonianr_Za'fo dyrQy:= ZQ”+ 8fo dyLBAG+By)AA
(PPN formalism, the PPN parameters at the 1PN orger, W ) i
and vy, are observationally constrained to the accuracy of +@BBy +AS)ABY],

about 0.1% or s§32]. Although this accuracy might be im- ) N
proved in the future, there will be no chance, unfortunately,Where again we have used the traceless condition. After the

to find the evidence for the large extra dimension from theSubstitution of these relations and E4.24), the remaining/
precision test of the solar system since the predicted devidtégration is just
tion in B, y is O((12/r2)log(r, /1)).

Of course, since our discussion developed in the present lfmdy(38(1)+A(1))
paper is restricted to second order perturbations with spheri- 8Jo i Y

1 1 (=
Eny(r-O): gfo dyﬁy{a‘6[(a4Af)}))2+ (a4BF;))2

3 (= 1(~ 1
O At

BMD. (A2

1 4
A+ —oyata,
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We can derive 1 1 Ky
Ri=5(B=1)AA=ZA(A+B),=——(p+3P), (BD)

1 2 2
2@'BY) =~ ( ABW+ ;B?P) - J drr2s@ey)

1 2 1
(A3) Ri=5(B—1)| A(A+2B)~ —(A+B) |+ 7A (B-A),

from Eq. (4.25, and (B +A()=-rB() from Eq.
(2.18. With the aid of these relations, it is easy to see that :ﬁ(p—P) (B2)
the remainingy integration(A2) can be performed. 2 '

APPENDIX B: SECOND ORDER PERTURBATIONS 0 1 1 1

IN THE 4D EINSTEIN GRAVITY Ry=5(B—1)| AB+ ~(A+B) | = 7B (A+B),

In this appendix, we give second order perturbations in .

the four-dimensional Einstein gravity for the comparison =?(p—P). (B3)

with the zero mode truncation of the gravity in the RS single
brane model. Although the results are well known as th
second post-Newtonian analy§&3], we present a brief deri- ! . 1

: . . these equations at the linear order, we obt&i®=—B®
vation for the following two reasongl) Since we are work — 2, whereg(r) is similarly defined as in Eq3.10. Put-

ing in a specific gauge, we need to consider a gauge trans- i . )
formation to compare our results with the expression%ng these results into EqBI), the equation forA'™ be-

presented in a different gaug®) To compute metric pertur- comes
bations in our restricted situation from the beginning is much
easier than to follow a literature in which unrestricted cases
are discussed.

We assume that the four-dimensional metric is static an
isotropic,

Swve expandA andB to the second order as E@.9). Solving

AAP =k, (pP+3P)—4pA ¢, (B4)

hich agrees with Eq4.8). Eliminating AA®) and P from
gs.(B1), (B2), and(B3), we obtain

ds?= — A2+ B0 gy, ABP=—i,p@+a4pNp— ()% (B5)

Up to the second order, the four-dimensional Einstein equaHence it was shown that the result obtained by the zero mode
tions with the energy-momentum tensor given in E22)  truncation (4.9) agrees with that for the four-dimensional
are Einstein gravity(B5).
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