11 research outputs found

    Epigenetic Activation of ASCT2 in the Hippocampus Contributes to Depression-Like Behavior by Regulating D-Serine in Mice

    Get PDF
    The roles of D-serine in depression are raised concerned recently as an intrinsic co-agonist for the NMDA receptor. However, the mechanisms underlying its regulation are not fully elucidated. ASCT2 is a Na+-dependent D-serine transporter. We found that decreased D-serine and increased hippocampal ASCT2 levels correlated with chronic social defeat stress (CSDS) in mice. Lentivirus-mediated shRNA-mediated knockdown of ASCT2 and the administration of exogenous D-serine in the hippocampus alleviated CSDS-induced social avoidance and immobility. In vivo and in vitro experiments revealed that upregulation of ASCT2 expression in CSDS was regulated through histone hyper-acetylation, not DNA methylation in its promoter region. Immunohistochemistry demonstrated the co-localization of ASCT2 and D-serine. Uptake of D-serine by ASCT2 was demonstrated by in vivo and in vitro experiments. Our results indicate that CSDS induces ASCT2 expression through epigenetic activation and decreases hippocampal D-serine levels, leading to social avoidance, and immobility. Thus, targeting D-serine transport represents an attractive new strategy for treating depression

    Randomized controlled trial: neostigmine for intra-abdominal hypertension in acute pancreatitis

    Get PDF
    BACKGROUND: Intra-abdominal hypertension (IAH) in acute pancreatitis (AP) is associated with deterioration in organ function. This trial aimed to assess the efficacy of neostigmine for IAH in patients with AP. METHODS: In this single-center, randomized trial, consenting patients with IAH within 2 weeks of AP onset received conventional treatment for 24 h. Patients with sustained intra-abdominal pressure (IAP) ≥ 12 mmHg were randomized to receive intramuscular neostigmine (1 mg every 12 h increased to every 8 h or every 6 h, depending on response) or continue conventional treatment for 7 days. The primary outcome was the percent change of IAP at 24 h after randomization. RESULTS: A total of 80 patients were recruited to neostigmine (n = 40) or conventional treatment (n = 40). There was no significant difference in baseline parameters. The rate of decrease in IAP was significantly faster in the neostigmine group compared to the conventional group by 24 h (median with 25th–75th percentile: −18.7% [− 28.4 to − 4.7%] vs. − 5.4% [− 18.0% to 0], P = 0.017). This effect was more pronounced in patients with baseline IAP ≥ 15 mmHg (P = 0.018). Per-protocol analysis confirmed these results (P = 0.03). Stool volume was consistently higher in the neostigmine group during the 7-day observational period (all P < 0.05). Other secondary outcomes were not significantly different between neostigmine and conventional treatment groups. CONCLUSION: Neostigmine reduced IAP and promoted defecation in patients with AP and IAH. These results warrant a larger, placebo-controlled, double-blind phase III trial. Trial registration Clinical Trial No: NCT02543658 (registered August /27, 2015). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-022-03922-4

    Epigenetic Activation of ASCT2 in the Hippocampus Contributes to Depression-Like Behavior by Regulating D-Serine in Mice

    No full text
    The roles of D-serine in depression are raised concerned recently as an intrinsic co-agonist for the NMDA receptor. However, the mechanisms underlying its regulation are not fully elucidated. ASCT2 is a Na+-dependent D-serine transporter. We found that decreased D-serine and increased hippocampal ASCT2 levels correlated with chronic social defeat stress (CSDS) in mice. Lentivirus-mediated shRNA-mediated knockdown of ASCT2 and the administration of exogenous D-serine in the hippocampus alleviated CSDS-induced social avoidance and immobility. In vivo and in vitro experiments revealed that upregulation of ASCT2 expression in CSDS was regulated through histone hyper-acetylation, not DNA methylation in its promoter region. Immunohistochemistry demonstrated the co-localization of ASCT2 and D-serine. Uptake of D-serine by ASCT2 was demonstrated by in vivo and in vitro experiments. Our results indicate that CSDS induces ASCT2 expression through epigenetic activation and decreases hippocampal D-serine levels, leading to social avoidance, and immobility. Thus, targeting D-serine transport represents an attractive new strategy for treating depression.</p

    The clock-controlled chemokine contributes to neuroinflammation-induced depression

    No full text
    The circadian rhythm plays a central role in immune function, and its disruption has been closely linked to the etiology of depression. However, the mechanisms underlying the association between depression and circadian rhythm remain unclear. We found that mice deficient of Per2, a central clock component of circadian output, were resilient to neuroinflammation-induced depressive behavior. After repeated central lipopolysaccharide (LPS) injections, MCP-1, MIP-1 beta, and RANTES increased in wild type (WT) but not in Per2-deficient mice. In addition, intracerebroventricular injection of RANTES resulted in depression-like behavior, and Met-RANTES, a CCR5 antagonist, could reverse depression-like behavior induced by LPS treatments. These results indicated that the Per2 gene contributes to depression via chemokines, especially RANTES. Furthermore, BMAL1 expression decreased in LPS-treated Per2-deficient mice and BMAL1 could bind to the promoter of Rantes, indicating clock gene can act as a regulator for neuroinflammation. In conclusion, Rantes, a clock-controlled gene (CCG), is involved in clock-immunological mechanisms underlying the effects of Per2 on neuroinflammation-induced depression-like behavior

    Demethylation of c-MYB binding site mediates upregulation of Bdnf IV in cocaine-conditioned place preference

    No full text
    Abnormal BDNF signaling contributes to the structural and behavioral plasticity induced by drugs of abuse. However, the mechanisms regulating expression of Bdnf in drug addiction remain elusive. In the present study, using the conditioned place preference (CPP) model, we showed that expression of Bdnf IV is upregulated in the nucleus accumbens (NAc) of conditioned animals while Bdnf I is upregulated in cocaine-treated mice irrespective of conditioning. The methylation level of a putative c-MYB binding site in the promoter region of Bdnf IV was significantly decreased in the NAc under cocaine CPP conditioning but remained unchanged without conditioning, concurrently with increased binding of c-MYB to this site. Exon IV promoter/luciferase reporter assays revealed that transactivation of Bdnf by c-MYB was blocked by methylation of this c-MYB binding site. Administration of methionine, a precursor of SAM, inhibited cocaine CPP, reversed demethylation of c-MYB binding site and induction of Bdnf IV expression by cocaine CPP. Our results imply that Bdnf IV demethylation at c-MYB binding site is involved in cocaine-triggered seeking behavior, whereas Bdnf I responds to the immediate pharmacological effects of cocaine.</p

    Data_Sheet_1_High salt intake damages myocardial viability and induces cardiac remodeling via chronic inflammation in the elderly.pdf

    No full text
    BackgroundThe heart is an important target organ for the harmful effects of high dietary salt intake. However, the effects and associations of high salt intake on myocardial viability, cardiac function changes, and myocardial remodeling are unclear.MethodsA total of 3,810 participants aged 60 years and older were eligible and enrolled from April 2008 to November 2010 and from August 2019 to November 2019 in the Shandong area of China. Salt intake was estimated using 24-h urine collection consecutively for 7 days. Myocardial strain rates, cardiac function and structure, and serum high-sensitivity C-reactive protein (hsCRP) levels were assessed. Participants were classified into low (n = 643), mild (n = 989), moderate (n = 1,245), and high (n = 933) groups, corresponding to 12 g/day of salt intake, respectively, depending on the salt intake estimation.ResultsThe global early diastolic strain rate (SRe) and late diastolic strain rate (SRa) in the high group were 1.58 ± 0.26, 1.38 ± 0.24. respectively, and significantly lower compared with the low, mild, and moderate groups (all P adjusted adjusted ConclusionOur data indicate that excess salt intake is independently associated with the impairment in myocardial viability and cardiac function, as well as myocardial remodeling. Chronic inflammation might play a mediating role in the association between high salt intake and cardiac function damage and myocardial remodeling.</p

    Reduced Skeletal Muscle Mass Is Associated with an Increased Risk of Asthma Control and Exacerbation

    No full text
    Background: Skeletal muscle mass (SMM) has been suggested to be associated with multiple health-related outcomes. However, the potential influence of SMM on asthma has not been largely explored. Objective: To study the association between SMM and clinical features of asthma, including asthma control and exacerbation, and to construct a model based on SMM to predict the risk of asthma exacerbation (AEx). Methods: In this prospective cohort study, we consecutively recruited patients with asthma (n = 334), classified as the SMM Normal group (n = 223), SMM Low group (n = 88), and SMM High group (n = 23). We investigated the association between SMM and clinical asthma characteristics and explored the association between SMM and asthma control and AEx within a 12-month follow-up period. Based on SMM, an exacerbation prediction model was developed, and the overall performance was externally validated in an independent cohort (n = 157). Results: Compared with the SMM Normal group, SMM Low group exhibited more airway obstruction and worse asthma control, while SMM High group had a reduced eosinophil percentage in induced sputum. Furthermore, SMM Low group was at a significantly increased risk of moderate-to-severe exacerbation compared with the SMM Normal group (relative risk adjusted 2.02 [95% confidence interval (CI), 1.35–2.68]; p = 0.002). In addition, a model involving SMM was developed which predicted AEx (area under the curve: 0.750, 95% CI: 0.691–0.810). Conclusions: Low SMM was an independent risk factor for future AEx. Furthermore, a model involving SMM for predicting the risk of AEx in patients with asthma indicated that assessment of SMM has potential clinical implications for asthma management
    corecore