38 research outputs found

    X-Ray Emitting Ejecta of Supernova Remnant N132D

    Full text link
    The brightest supernova remnant in the Magellanic Clouds, N132D, belongs to the rare class of oxygen-rich remnants, about a dozen objects that show optical emission from pure heavy-element ejecta. They originate in explosions of massive stars that produce large amounts of O, although only a tiny fraction of that O is found to emit at optical wavelengths. We report the detection of substantial amounts of O at X-ray wavelengths in a recent 100 ks Chandra ACIS observation of N132D. A comparison between subarcsecond-resolution Chandra and Hubble images reveals a good match between clumpy X-ray and optically emitting ejecta on large (but not small) scales. Ejecta spectra are dominated by strong lines of He- and H-like O; they exhibit substantial spatial variations partially caused by patchy absorption within the LMC. Because optical ejecta are concentrated in a 5 pc radius elliptical expanding shell, the detected ejecta X-ray emission also originates in this shell.Comment: 5 pages, 6 figures, ApJ Letters, in pres

    Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search

    Full text link
    We present theory and algorithms to perform an all-sky coherent search for periodic signals of gravitational waves in narrow-band data of a detector. Our search is based on a statistic, commonly called the F\mathcal{F}-statistic, derived from the maximum-likelihood principle in Paper I of this series. We briefly review the response of a ground-based detector to the gravitational-wave signal from a rotating neuron star and the derivation of the F\mathcal{F}-statistic. We present several algorithms to calculate efficiently this statistic. In particular our algorithms are such that one can take advantage of the speed of fast Fourier transform (FFT) in calculation of the F\mathcal{F}-statistic. We construct a grid in the parameter space such that the nodes of the grid coincide with the Fourier frequencies. We present interpolation methods that approximately convert the two integrals in the F\mathcal{F}-statistic into Fourier transforms so that the FFT algorithm can be applied in their evaluation. We have implemented our methods and algorithms into computer codes and we present results of the Monte Carlo simulations performed to test these codes.Comment: REVTeX, 20 pages, 8 figure

    An X-ray and Radio Study of the Varying Expansion Velocities in Tycho's Supernova Remnant

    Full text link
    We present newly obtained X-ray and radio observations of Tycho's supernova remnant using {\it Chandra} and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we now have time baselines for expansion measurements of the remnant of 12-15 year in the X-rays and 30 year in the radio. The remnant's large angular size allows for proper motion measurements at many locations around the periphery of the blast wave. We find, consistent with earlier measurements, a clear gradient in the expansion velocity of the remnant, despite its round shape. The proper motions on the western and southwestern sides of the remnant are about a factor of two higher than those in the east and northeast. We showed in an earlier work that this is related to an offset of the explosion site from the geometric center of the remnant due to a density gradient in the ISM, and using our refined measurements reported here, we find that this offset is ∼23"\sim 23" towards the northeast. An explosion center offset in such a circular remnant has implications for searches for progenitor companions in other remnants.Comment: Accepted for publication in ApJ Letter

    Observations of X-rays and Thermal Dust Emission from the Supernova Remnant Kes 75

    Full text link
    We present Spitzer Space Telescope and Chandra X-ray Observatory observations of the composite Galactic supernova remnant Kes 75 (G29.7-0.3). We use the detected flux at 24 microns and hot gas parameters from fitting spectra from new, deep X-ray observations to constrain models of dust emission, obtaining a dust-to-gas mass ratio M_dust/M_gas ~0.001. We find that a two-component thermal model, nominally representing shocked swept-up interstellar or circumstellar material and reverse-shocked ejecta, adequately fits the X-ray spectrum, albeit with somewhat high implied densities for both components. We surmise that this model implies a Wolf-Rayet progenitor for the remnant. We also present infrared flux upper limits for the central pulsar wind nebula.Comment: 7 pages, 2 tables, 4 figures, uses emulateapj. Accepted for publication in Ap

    The Three-Dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    Full text link
    We present the first three-dimensional measurements of the velocity of various ejecta knots in Tycho's supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12-year baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 "tufts" of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line of sight velocity, we use two different methods: a non-equilibrium ionization model fit to the strong Si and S lines in the 1.2-2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the red or blue shift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s−1^{-1}, with a mean of 4430 km s−1^{-1}. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s−1^{-1}. Some Type Ia supernova explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and discuss our findings in light of various explosion models, favoring those delayed detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant's evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.Comment: Accepted for publication in ApJ. Some figures slightly degraded to reduce file siz

    A Deep Chandra Observation of Kepler's Supernova Remnant: A Type Ia Event with Circumstellar Interaction

    Full text link
    We present initial results of a 750 ks Chandra observation of the remnant of Kepler's supernova of AD 1604. The strength and prominence of iron emission, together with the absence of O-rich ejecta, demonstrate that Kepler resulted from a thermonuclear supernova, even though evidence for circumstellar interaction is also strong. We have analyzed spectra of over 100 small regions, and find that they fall into three classes. (1) The vast majority show Fe L emission between 0.7 and 1 keV and Si and S K alpha emission; we associate these with shocked ejecta. A few of these are found at or beyond the mean blast wave radius. (2) A very few regions show solar O/Fe abundance rations; these we associate with shocked circumstellar medium (CSM). Otherwise O is scarce. (3) A few regions are dominated by continuum, probably synchrotron radiation. Finally, we find no central point source, with a limit about 100 times fainter than the central object in Cas A. The evidence that the blast wave is interacting with CSM may indicate a Ia explosion in a more massive progenitor.Comment: Accepted by ApJ Letter

    Dense, Fe-rich Ejecta in Supernova Remnants DEM L238 and DEM L249: A New Class of Type Ia Supernova?

    Get PDF
    We present observations of two LMC supernova remnants (SNRs), DEM L238 and DEM L249, with the Chandra and XMM-Newton X-ray satellites. Bright central emission, surrounded by a faint shell, is present in both remnants. The central emission has an entirely thermal spectrum dominated by strong Fe L-shell lines, with the deduced Fe abundance in excess of solar and not consistent with the LMC abundance. This Fe overabundance leads to the conclusion that DEM L238 and DEM L249 are remnants of thermonuclear (Type Ia) explosions. The shell emission originates in gas swept up and heated by the blast wave. A standard Sedov analysis implies about 50 solar masses in both swept-up shells, SNR ages between 10,000 and 15,000 yr, low (< 0.05 cm^-3) preshock densities, and subluminous explosions with energies of 3x10^50 ergs. The central Fe-rich supernova ejecta are close to collisional ionization equilibrium. Their presence is unexpected, because standard Type Ia SNR models predict faint ejecta emission with short ionization ages. Both SNRs belong to a previously unrecognized class of Type Ia SNRs characterized by bright interior emission. Denser than expected ejecta and/or a dense circumstellar medium around the progenitors are required to explain the presence of Fe-rich ejecta in these SNRs. Substantial amounts of circumstellar gas are more likely to be present in explosions of more massive Type Ia progenitors. DEM L238, DEM L249, and similar SNRs could be remnants of ``prompt'' Type Ia explosions with young (~100 Myr old) progenitors.Comment: 24 pages, 8 figures, ApJ, in pres

    RCW 86: A Type Ia Supernova in a Wind-Blown Bubble

    Full text link
    We report results from a multi-wavelength analysis of the Galactic SNR RCW 86, the proposed remnant of the supernova of 185 A.D. We report new infrared observations from {\it Spitzer} and {\it WISE}, where the entire shell is detected at 24 and 22 μ\mum. We fit the infrared flux ratios with models of collisionally heated ambient dust, finding post-shock gas densities in the non-radiative shocks of 2.4 and 2.0 cm−3^{-3} in the SW and NW portions of the remnant, respectively. The Balmer-dominated shocks around the periphery of the shell, large amount of iron in the X-ray emitting ejecta, and lack of a compact remnant support a Type Ia origin for this remnant. From hydrodynamic simulations, the observed characteristics of RCW 86 are successfully reproduced by an off-center explosion in a low-density cavity carved by the progenitor system. This would make RCW 86 the first known case of a Type Ia supernova in a wind-blown bubble. The fast shocks (>3000> 3000 km s−1^{-1}) observed in the NE are propagating in the low-density bubble, where the shock is just beginning to encounter the shell, while the slower shocks elsewhere have already encountered the bubble wall. The diffuse nature of the synchrotron emission in the SW and NW is due to electrons that were accelerated early in the lifetime of the remnant, when the shock was still in the bubble. Electrons in a bubble could produce gamma-rays by inverse-Compton scattering. The wind-blown bubble scenario requires a single-degenerate progenitor, which should leave behind a companion star.Comment: Accepted for publication in ApJ. 50 pages, 9 figure
    corecore