249 research outputs found

    Designing Efficient Taxi Pickup Operations at Airports

    Get PDF
    This paper provides a practical procedure for designing efficient taxi pickup operations at airports. How to do this effectively is an open question. Solutions are not available, and practices vary. They reflect different approaches to and lack of research on the subject. The solutions are often unsatisfactory. At many airports, passengers routinely suffer long waits outdoors, exposed to the elements, after a tiring journey. Such disagreeable experiences are avoidable. Designing efficient taxi pickup operations at airports is problematic. The peculiarities of the process preclude easy solutions. First, the process involves queuing, so system performance is a nonlinear function of the loads. Second, it features unstable transient situations, since travelers typically arrive in bulk over short periods. Third, traffic is significantly differentiated and consists of a wide variety of groups implying different service characteristics. Standard results from queuing theory thus do not have a useful application to this problem. The design process uses simulation that is based on detailed observation of local practices. It involves four steps: (a) detailed local measurements of the arrival of both travelers and taxis, and the service rates provided by taxis in different queuing positions; (b) creation and validation of a simulation model sufficiently detailed to account for these realities; (c) exploration of design alternatives to estimate the characteristics of the service they would provide; and (d) selection of a preferred design that properly balances efforts to minimize average and extreme wait times. The paper demonstrates the procedure through application to Lisbon International Airport, Portugal.SIMUL8 Corporatio

    An Airport Experience Framework from a Tourism Perspective

    Get PDF
    This study, by integrating the perspectives of sociological, psychological, and service marketing and management, all of which affect the passenger experience, proposes a theoretical framework for the creation of the airport experience in relation to tourism. This research responds to the current phenomenon in which airports are offering other types of experiences within the airport terminal, expanding the role of an airport from being a utility for transportation into a place where various and different values can be offered. This research explores the current airport experience and adds to research on airport experience by clarifying ten key components necessary for airport passenger experience propositions based on existing research, the current industry phenomena, and the empirical study. The paper also underlines those components that can enhance passenger experience in relation to tourism and highlights the role that airports contribute to a destination

    Second surgery for progressive glioblastoma: a multi‐centre questionnaire and cohort‐based review of clinical decision‐making and patient outcomes in current practice

    Get PDF
    PURPOSE: Glioblastoma prognosis is poor. Treatment options are limited at progression. Surgery may benefit, but no quality guidelines exist to inform patient selection. We sought to describe variations in surgical management at progression, highlight where further evidence is needed, and build towards a consensus strategy. METHODS: Current practice in selection of patients with progressive GBM for second surgery was surveyed online amongst specialists in the UK and Europe. We complemented this with an assessment of practice in a retrospective cohort study from six United Kingdom neurosurgical units. We used descriptive statistics to analyse the data. RESULTS: 234 questionnaire responses were received. Maintaining or improving patient quality of life was key to decision making, with variation as to whether patient age, performance status or intended extent of resection was relevant. MGMT methylation status was not important. Half considered no minimum time after first surgery. 288 patients were reported in the cohort analysis. Median time to second surgery from first surgery 390 days. Median overall survival 815 days, with no association between time to second surgery and time to death (p = 0.874). CONCLUSIONS: This is the most wide-ranging examination of contemporaneous practice in management of GBM progression. Without evidence-based guidelines, the variation is unsurprising. We propose consensus guidelines for consideration, to reduce heterogeneity in decision making, support data collection and analysis of factors influencing outcomes, and to inform clinical trials to establish whether second surgery improves patient outcomes, or simply selects to patients already performing well

    Evaluating and Minimizing Distributed Cavity Phase Errors in Atomic Clocks

    Full text link
    We perform 3D finite element calculations of the fields in microwave cavities and analyze the distributed cavity phase errors of atomic clocks that they produce. The fields of cylindrical cavities are treated as an azimuthal Fourier series. Each of the lowest components produces clock errors with unique characteristics that must be assessed to establish a clock's accuracy. We describe the errors and how to evaluate them. We prove that sharp structures in the cavity do not produce large frequency errors, even at moderately high powers, provided the atomic density varies slowly. We model the amplitude and phase imbalances of the feeds. For larger couplings, these can lead to increased phase errors. We show that phase imbalances produce a novel distributed cavity phase error that depends on the cavity detuning. We also design improved cavities by optimizing the geometry and tuning the mode spectrum so that there are negligible phase variations, allowing this source of systematic error to be dramatically reduced.Comment: To appear in Metrologi

    Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest

    Get PDF
    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (Amass), nitrogen concentration (Nmass), and ÎŽ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (Aarea), phosphorus concentration per unit mass (Pmass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree Aarea decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana ÎŽ13C increased four times more than tree ÎŽ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher Amass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests

    Is there a common water-activity limit for the three domains of life?

    Get PDF
    Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (a w) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650-0.605 a w. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 a w). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 a w for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∌0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 a w for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life
    • 

    corecore