514 research outputs found

    Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Get PDF
    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults

    Pathophysiological Mechanisms In Gaseous Therapies For Severe Malaria

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Over 200 million people worldwide suffer from malaria every year, a disease that causes 584,000 deaths annually. In recent years, significant improvements have been achieved on the treatment of severe malaria, with intravenous artesunate proving superior to quinine. However, mortality remains high, at 8% in children and 15% in adults in clinical trials, and even worse in the case of cerebral malaria (18% and 30%, respectively). Moreover, some individuals who do not succumb to severe malaria present long-term cognitive deficits. These observations indicate that strategies focused only on parasite killing fail to prevent neurological complications and deaths associated with severe malaria, possibly because clinical complications are associated in part with a cerebrovascular dysfunction. Consequently, different adjunctive therapies aimed at modulating malaria pathophysiological processes are currently being tested. However, none of these therapies has shown unequivocal evidence in improving patient clinical status. Recently, key studies have shown that gaseous therapies based mainly on nitric oxide (NO), carbon monoxide (CO), and hyperbaric (pressurized) oxygen (HBO) alter vascular endothelium dysfunction and modulate the host immune response to infection. Considering gaseous administration as a promising adjunctive treatment against severe malaria cases, we review here the pathophysiological mechanisms and the immunological aspects of such therapies.844874882HHS \ National Institutes of Health (NIH) [AI118302-02]MCTI \ Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fabio Trindade Maranhao Costa [2012/16525-2]Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)Carvalho through a Cientista do Nosso Estado fellowshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Pathophysiological Mechanisms In Gaseous Therapies For Severe Malaria.

    Get PDF
    Over 200 million people worldwide suffer from malaria every year, a disease that causes 584,000 deaths annually. In recent years, significant improvements have been achieved on the treatment of severe malaria, with intravenous artesunate proving superior to quinine. However, mortality remains high at 8% in children and 15% in adults in clinical trials, and even worse in the case of cerebral malaria (18% and 30%, respectively). Moreover, some individuals who do not succumb to severe malaria present long-term cognitive deficits. These observations indicate that strategies focused only on parasite killing fail to prevent neurological complications and deaths associated with severe malaria, possibly because clinical complications are associated in part with a cerebrovascular dysfunction. Consequently, different adjunctive therapies aimed at modulating malaria pathophysiological processes are currently being tested. However, none of these therapies has shown unequivocal evidence in improving patients' clinical status. Recently, key studies have shown that gaseous therapies based mainly on nitric oxide (NO), carbon monoxide (CO) and hyperbaric (pressurized) oxygen (HBO) alter vascular endothelium dysfunction and modulate host immune response to infection. Considering gaseous administration as a promising adjunctive treatment against severe malaria cases, we review here the pathophysiological mechanisms and the immunological aspects of such therapies.8

    Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction

    Get PDF
    Modern scientific knowledge of how memory functions are organized in the human brain originated from the case of Henry G. Molaison (H.M.), an epileptic patient whose amnesia ensued unexpectedly following a bilateral surgical ablation of medial temporal lobe structures, including the hippocampus. The neuroanatomical extent of the 1953 operation could not be assessed definitively during H.M.’s life. Here we describe the results of a procedure designed to reconstruct a microscopic anatomical model of the whole brain and conduct detailed 3D measurements in the medial temporal lobe region. This approach, combined with cellular-level imaging of stained histological slices, demonstrates a significant amount of residual hippocampal tissue with distinctive cytoarchitecture. Our study also reveals diffuse pathology in the deep white matter and a small, circumscribed lesion in the left orbitofrontal cortex. The findings constitute new evidence that may help elucidate the consequences of H.M.’s operation in the context of the brain’s overall pathology

    The Facet of Human Impact: Solenopsis invicta Buren, 1972 Spreading around the Atlantic Forest

    Get PDF
    The present investigation deals with some aspects of the diversity of fire ants (Hymenoptera: Formicidae) in their native range. The Red Imported Fire Ant Solenopsis invicta is native to the tropical and subtropical inland territories of South America. In Brazil, it mainly occurs around the Pantanal region and across the Paraguay river, a region composed of grasslands which are seasonally flooded. Recent studies have evidenced this fire ant species is gradually spreading to other regions of Brazil. In the present investigation, we surveyed the molecular diversity of S. invicta populations across fragments of Atlantic Forest in Sao Paulo, Brazil, using mtDNA COI haplotypes. Fire ant nests were sampled along the highways lining the northern and southern slope sides of the mountain range Serra do Mar, SP, Brazil. Four haplotypes were identified (H1-H4), which were assessed for similarity to deposited records by other authors, revealing that the haplotypes H1 and H2 are likely of foreign origin through recent reintroduction via a marine port to the south of the Serra do Mar mountain range. On the other hand, the haplotypes H3 and H4, predominating among the inland samples from the northern side of the mountain range, were most similar to previous records from more central regions of Brazil. Haplotypes clustered into distinct supergroups, further pointing to the occurrence of two separate expansion waves of S. invicta in the region. We suggest the obtained pattern indicates the mountain range may function as a geographical barrier deferring gene flow

    In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. <it>Caesalpinia pluviosa</it>, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity.</p> <p>Methods</p> <p>Crude extract (CE) was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested <it>in vitro </it>against chloroquine-sensitive (3D7) and -resistant (S20) strains of <it>Plasmodium falciparum</it> and <it>in vivo </it>in <it>Plasmodium chabaudi</it>-infected mice. <it>In vitro </it>interaction with artesunate and the active <it>C. pluviosa </it>fractions was assessed, and mass spectrometry analyses were conducted.</p> <p>Results</p> <p>At non-toxic concentrations, the 100% ethanolic (F4) and 50% methanolic (F5) fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to <it>m/z </it>303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of <it>m/z </it>137 and 153.</p> <p>Conclusions</p> <p>The findings show that the F4 fraction of <it>C. pluviosa </it>exhibits anti-malarial activity <it>in vitro </it>at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained <it>in vivo </it>after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.</p

    Asymmetric nuclear motion of the F 1s–ionized state in BF3 probed by quadruple-ion-coincidence momentum imaging

    Get PDF
    Using the quadruple-ion-coincidence momentum imaging technique, we find that the momentum correlation of the four atomic ions departed from one BF34+ parent molecular ion produced via multiple Auger decay after F 1s ionization exhibits asymmetric fragmentation in which the B+ ion is ejected in the direction opposite to one of the F+ ions. This observation provides evidence of symmetry lowering, from D3h to C3v in the F 1s–ionized state
    corecore