13 research outputs found

    An Enigmatic Stramenopile Sheds Light on Early Evolution in Ochrophyta Plastid Organellogenesis

    Get PDF
    Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host–plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions

    Rappemonads are haptophyte phytoplankton

    Get PDF
    20年以上謎だった生物の正体が判明 --光合成生物進化解明のカギに--. 京都大学プレスリリース. 2021-03-29.Rapidly accumulating genetic data from environmental sequencing approaches have revealed an extraordinary level of unsuspected diversity within marine phytoplankton, which is responsible for around 50% of global net primary production.However, the phenotypic identity of many of the organisms distinguished by environmental DNA sequences remains unclear. The rappemonads represent a plastid-bearing protistan lineage that to date has only been identified by environmental plastid 16S rRNA sequences.The phenotypic identity of this group, which does not confidently cluster in any known algal clades in 16S rRNA phylogenetic reconstructions, has remained unknown since the first report of environmental sequences over two decades ago. We show that rappemonads are closely related to a haptophyte microalga, Pavlomulina ranunculiformis gen. nov. et sp. nov., and belong to a new haptophyte class, the Rappephyceae. Organellar phylogenomic analyses provide strong evidence for the inclusion of this lineage within the Haptophyta as a sister group to the Prymnesiophyceae. Members of this new class have a cosmopolitan distribution in coastal and oceanic regions. The relative read abundance of Rappephyceae in a large environmental barcoding dataset was comparable to, or greater than, those of major haptophyte species, such as the bloom-forming Gephyrocapsa huxleyi and Prymnesium parvum, and this result indicates that they likely have a significant impact as primary producers. Detailed characterization of Pavlomulina allowed for reconstruction of the ancient evolutionary history of the Haptophyta, a group that is one of the most important components of extant marine phytoplankton communities

    Comparison of weighed food record procedures for the reference methods in two validation studies of food frequency questionnaires

    Get PDF
    Background: Although open-ended dietary assessment methods, such as weighed food records (WFRs), are generally considered to be comparable, differences between procedures may influence outcome when WFRs are conducted independently. In this paper, we assess the procedures of WFRs in two studies to describe their dietary assessment procedures and compare the subsequent outcomes. Methods: WFRs of 12 days (3 days for four seasons) were conducted as reference methods for intake data, in accordance with the study protocol, among a subsample of participants of two large cohort studies. We compared the WFR procedures descriptively. We also compared some dietary intake variables, such as the frequency of foods and dishes and contributing foods, to determine whether there were differences in the portion size distribution and intra- and inter-individual variation in nutrient intakes caused by the difference in procedures. Results: General procedures of the dietary records were conducted in accordance with the National Health and Nutrition Survey and were the same for both studies. Differences were seen in 1) selection of multiple days (non-consecutive days versus consecutive days); and 2) survey sheet recording method (individual versus family participation). However, the foods contributing to intake of energy and selected nutrients, the portion size distribution, and intra- and inter-individual variation in nutrient intakes were similar between the two studies. Conclusion: Our comparison of WFR procedures in two independent studies revealed several differences. Notwithstanding these procedural differences, however, the subsequent outcomes were similar

    Genome evolution of a nonparasitic secondary heterotroph, the diatom Nitzschia putrida

    Get PDF
    International audienceSecondary loss of photosynthesis is observed across almost all plastid-bearing branches of the eukaryotic tree of life. However, genome-based insights into the transition from a phototroph into a secondary heterotroph have so far only been revealed for parasitic species. Free-living organisms can yield unique insights into the evolutionary consequence of the loss of photosynthesis, as the parasitic lifestyle requires specific adaptations to host environments. Here, we report on the diploid genome of the free-living diatom Nitzschia putrida (35 Mbp), a nonphotosynthetic osmotroph whose photosynthetic relatives contribute ca. 40% of net oceanic primary production. Comparative analyses with photosynthetic diatoms and heterotrophic algae with parasitic lifestyle revealed that a combination of gene loss, the accumulation of genes involved in organic carbon degradation, a unique secretome, and the rapid divergence of conserved gene families involved in cell wall and extracellular metabolism appear to have facilitated the lifestyle of a free-living secondary heterotroph

    Taming chlorophylls by early eukaryotes underpinned algal interactions and the diversification of the eukaryotes on the oxygenated Earth

    Get PDF
    Extant eukaryote ecology is primarily sustained by oxygenic photosynthesis, in which chlorophylls play essential roles. The exceptional photosensitivity of chlorophylls allows them to harvest solar energy for photosynthesis, but on the other hand, they also generate cytotoxic reactive oxygen species. A risk of such phototoxicity of the chlorophyll must become particularly prominent upon dynamic cellular interactions that potentially disrupt the mechanisms that are designed to quench photoexcited chlorophylls in the phototrophic cells. Extensive examination of a wide variety of phagotrophic, parasitic, and phototrophic microeukaryotes demonstrates that a catabolic process that converts chlorophylls into nonphotosensitive 13(2),17(3)-cyclopheophorbide enols (CPEs) is phylogenetically ubiquitous among extant eukaryotes. The accumulation of CPEs is identified in phagotrophic algivores belonging to virtually all major eukaryotic assemblages with the exception of Archaeplastida, in which no algivorous species have been reported. In addition, accumulation of CPEs is revealed to be common among phototrophic microeukaryotes (i.e., microalgae) along with dismantling of their secondary chloroplasts. Thus, we infer that CPE-accumulating chlorophyll catabolism (CACC) primarily evolved among algivorous microeukaryotes to detoxify chlorophylls in an early stage of their evolution. Subsequently, it also underpinned photosynthetic endosymbiosis by securing close interactions with photosynthetic machinery containing abundant chlorophylls, which led to the acquisition of secondary chloroplasts. Our results strongly suggest that CACC, which allowed the consumption of oxygenic primary producers, ultimately permitted the successful radiation of the eukaryotes throughout and after the late Proterozoic global oxygenation.</p
    corecore