481 research outputs found

    Characterizing the continuous gravitational-wave signal from boson clouds around Galactic isolated black holes

    Get PDF
    Ultralight bosons can form large clouds around stellar-mass black holes via the superradiance instability. Through processes such as annihilation, these bosons can source continuous gravitational-wave signals with frequencies within the range of LIGO and Virgo. If boson annihilation occurs, then the Galactic black hole population will give rise to many gravitational signals; we refer to this as the ensemble signal. We characterize the ensemble signal as observed by the gravitational-wave detectors; this is important because the ensemble signal carries the primary signature that a continuous wave signal has a boson annihilation origin. We explore how a broad set of black hole population parameters affects the resulting spin-0 boson annihilation signal and consider its detectability by recent searches for continuous gravitational waves. A population of 108 black holes with masses up to 30M and a flat dimensionless initial spin distribution between zero and unity produces up to 1000 signals loud enough in principle to be detected by these searches. For a more moderately spinning population, the number of signals drops by about an order of magnitude, still yielding up to 100 detectable signals for some boson masses. A nondetection of annihilation signals at frequencies between 100 and 1200 Hz disfavors the existence of scalar bosons with rest energies between 2×10-13 and 2.5×10-12 eV. Finally, we show that, depending on the black hole population parameters, care must be taken in assuming that the continuous wave upper limits from searches for isolated signals are still valid for signals that are part of a dense ensemble: Between 200 and 300 Hz, we urge caution when interpreting a null result for bosons between 4×10-13 and 6×10-13 eV. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society

    Generalized Involution Models for Wreath Products

    Get PDF
    We prove that if a finite group HH has a generalized involution model, as defined by Bump and Ginzburg, then the wreath product H≀SnH \wr S_n also has a generalized involution model. This extends the work of Baddeley concerning involution models for wreath products. As an application, we construct a Gelfand model for wreath products of the form A≀SnA \wr S_n with AA abelian, and give an alternate proof of a recent result due to Adin, Postnikov, and Roichman describing a particularly elegant Gelfand model for the wreath product \ZZ_r \wr S_n. We conclude by discussing some notable properties of this representation and its decomposition into irreducible constituents, proving a conjecture of Adin, Roichman, and Postnikov's.Comment: 29 page

    A Component Based Heuristic Search Method with Evolutionary Eliminations

    Get PDF
    Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with evolutionary eliminations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then to implement two evolutionary elimination strategies mimicking natural selection and natural mutation process on these components respectively to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs an evaluation function which evaluates how well each component contributes towards the final objective. Two elimination steps are then applied: the first elimination eliminates a number of components that are deemed not worthy to stay in the current schedule; the second elimination may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.Comment: 27 pages, 4 figure

    An effective spin-orbital Hamiltonian for the double perovskite Sr2_2FeW O6_6: Derivation of the phase diagram

    Full text link
    We formulate a superexchange theory of insulating double-perovskite compounds such as Sr2_2FeWO6_6. An effective spin-orbital Hamiltonian is derived in the strong coupling limit of Hubbard model for d-electrons on Fe and W ions. The relevant degrees of freedom are the spins S=2 and the three-fold orbital degeneracy of Fe2+^{2+}-ions. W-sites are integrated out by means of a fourth-order perturbative expansion. The magnetically and orbitally ordered ground states of the effective Hamiltonia n are discussed as a function of the model parameters. We show that for realistic values of such parameters the ground state is antiferromagnetic, as experimentally observed. The order found is of type-II, consisting of \{111\} ferromagnetic planes stac ked antiferromagnetically. The orbital order energy scale found is one order of magnitude less than the spi n one.Comment: 12 pages, 4 figure

    Ultrastable CO2 Laser Trapping of Lithium Fermions

    Get PDF
    We demonstrate an ultrastable CO2 laser trap that provides tight confinement of neutral atoms with negligible optical scattering and minimal laser-noise- induced heating. Using this method, fermionic 6Li atoms are stored in a 0.4 mK deep well with a 1/e trap lifetime of 300 sec, consistent with a background pressure of 10^(-11) Torr. To our knowledge, this is the longest storage time ever achieved with an all-optical trap, comparable to the best reported magnetic traps.Comment: 4 pages using REVTeX, 1 eps figur

    Effective three-band model for double perovskites

    Full text link
    We start from a six-band model describing the transition-metal t2g orbitals of half-metallic double perovskite systems, such as Sr2FeMoO6, in which only one of the transition metal ions (Fe) contains important intratomic repulsion Ufe. By eliminating the Mo orbitals using a low-energy reduction similar to that used in the cuprates, we construct a Hamiltonian which contains only effective t2g Fe orbitals. This allows to treat exactly Ufe, and most of the Fe-Mo hopping. As an application, we treat the effective Hamiltonian in the slave-boson mean-field approximation and calculate the position of the metal-insulator transition and other quantities as a function of pressure or on-site energy difference.Comment: 8 pages, 3 figure
    • …
    corecore