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ABSTRACT

We prove that if a finite group H has a generalized involution model,

as defined by Bump and Ginzburg, then the wreath product H � Sn also

has a generalized involution model. This extends the work of Baddeley

concerning involution models for wreath products. As an application, we

construct a Gel′fand model for wreath products of the form A � Sn with

A abelian, and give an alternate proof of a recent result due to Adin,

Postnikov and Roichman describing a particularly elegant Gel′fand model

for the wreath product Zr � Sn. We conclude by discussing some notable

properties of this representation and its decomposition into irreducible

constituents, proving a conjecture of Adin, Postnikov and Roichman.

1. Introduction

A Gel′fand model for a group is a representation equivalent to the multiplicity

free sum of all the group’s irreducible representations. In the recent papers [1, 2],

Adin, Postnikov and Roichman describe two Gel′fand models for the symmetric

group Sn and the wreath product Zr �Sn. These models are remarkable for their

simple combinatorial description, which goes something as follows.

The Gel′fand model for Sn in [1] coincides with the one for Zr �Sn in [2] when

r = 1, so for the moment we discuss only this second model. We view Zr � Sn
as the set of generalized n×n permutation matrices with nonzero entries given
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by rth roots of unity and define

Vr,n = Q-span
{
Cω : ω ∈ Zr � Sn, ωT = ω

}
to be a vector space generated by the symmetric matrices in Zr � Sn. Adin,

Postnikov and Roichman define a representation ρr,n of Zr � Sn in Vr,n by the

formula

(1) ρr,n(g)Cω = signr,n(g, ω) · CgωgT , for g, ω ∈ Zr � Sn with ωT = ω,

where signr,n(g, ω) is a coefficient taking values in {±1}. If s1, . . . , sn−1 ∈ Zr �Sn
correspond to the simple reflections in Sn and s0 ∈ Zr �Sn is the diagonal matrix

diag (ζr, 1, . . . , 1) with ζr = e2πi/r, then

signr,n(si, ω) =

⎧⎨⎩−1, if |ω|(i) = i+ 1 and |ω|(i+ 1) = i;

1, otherwise;
for 1 ≤ i < n,

where |ω| ∈ Sn denotes the permutation corresponding to the matrix formed

by replacing each entry of the matrix ω with its absolute value, and

signr,n(s0, ω) =

⎧⎨⎩−1, if ω11 = ζ−1
r and r is even;

1, otherwise.

Theorem 1.2 in [2] asserts that the representation ρr,n is in fact a Gel′fand
model for Zr � Sn.
Adin, Postnikov and Roichman provide a largely combinatorial proof of this

result. Their strategy is first to find a formula for the character of any Gel′fand
model for Zr � Sn. They then prove that the map ρr,n is a representation,

compute its character, and check that this matches their first formula. This

approach has the merit of hiding much of the messier representation theory in

the background, behind some powerful combinatorial machinery. Such a com-

binatorial method of proof comes at a cost, however. Besides requiring some

detailed case-by-case analysis, it does not give us a very clear idea of what mo-

tivated the construction of these Gel′fand models, or of what accounts for their

particular elegance. As a consequence, one does not know how various sub-

representations of ρr,n explicitly decompose into irreducible constituents, and

it is not evident how we might extend the Gel′fand model for Zr � Sn, either
to wreath products with other groups in place of Zr or to the complex reflec-

tion subgroups G(r, p, n) ⊂ Zr � Sn. This work arose as an attempt to answer
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the former question of origin, and by extension to address these subsequent

problems.

In the special case when r = 1 and the wreath product Zr �Sn coincides with

Sn, our Gel′fand model arises from an involution model for Sn. By this, we

mean a set of linear characters {λi : CSn(ωi) → C} where ωi are representatives

of the distinct conjugacy classes of involutions in Sn, such that each irreducible

character of Sn appears as a constituent with multiplicity one of the sum of

induced characters
∑
i Ind

Sn
CSn(ωi)

(λi). In the brief note [10], Inglis, Richardson

and Saxl describe an involution model for Sn which naturally corresponds to

the representation ρr,n with r = 1. Given this observation, a description of how

the Gel′fand model in [1] decomposes come for free.

Addressing the case for general r requires more effort on our part. The work

of Baddeley in [6] gives an important clue as to what our answers should look

like. That paper shows how to construct an involution model for the wreath

product H � Sn when an involution model exists for the finite group H . When

H = Z2, Baddeley’s construction gives rise to the Gel′fand model ρ2,n. For all

r > 2, however, the representation ρr,n does not correspond to an involution

model. In particular, for r > 2 the symmetric matrices in Zr � Sn are not all

involutions and the group H = Zr does not itself possess an involution model.

Nevertheless, the Gel′fand model ρr,n does arise from a similar construction.

To describe this precisely, we make use of the definition by Bump and Ginzburg

in [8] of a generalized involution model. As one of our main results, we

extend Baddeley’s work in [6] to prove that if a finite group H has a generalized

involution model then so does H � Sn. As an application of this result, we

construct generalized involution models for Zr � Sn and give a simple, alternate

proof that ρr,n is a Gel′fand model.

We have organized the rest of this paper as follows. Section 2 defines a

generalized involution model for a group and provides some useful preliminary

results. In Section 3 we review the content of [10] and show how it implies the

results in [1] concerning Gel′fand models for the symmetric group. In addition,

we finish a calculation started in [8] to classify all generalized involution models

of the alternating groups. Section 4 contains our main results. In this section,

we extend two theorems in [6] to provide a constructive proof of the following:

Theorem: If a finite group H has a generalized involution model, then so does

H � Sn for all n ≥ 1.
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In Section 5 we apply this general result to give an alternate proof that ρr,n is a

Gel′fand model for Zr �Sn. We also provide Gel′fand models for wreath products

of the form A � Sn, where A is an arbitrary finite abelian group. Using these

constructions, we describe explicitly how the representation ρr,n decomposes

into irreducible constituents. Specifically, given an involution ω ∈ Zr � Sn, we
say precisely which irreducible representations of Zr �Sn appear as constituents

of the subrepresentation generated by the vector Cω ∈ Vr,n. This allows us to

prove the following theorem, which implies Conjecture 7.1 in [2].

Theorem: Let X be a set of symmetric elements in Zr � Sn. If the elements

of X span a ρr,n-invariant subspace of Vr,n, then the subrepresentation of ρr,n

on this space is equivalent to the multiplicity-free sum of all irreducible Zr �Sn-
representations whose shapes are obtained from the elements of X by the colored

RSK correspondence.

This information provides the starting point of the complementary paper

[15], in which we classify the generalized involution models of all finite complex

reflection groups.

2. Preliminaries

Below, we introduce the concept of a generalized involution model for a

finite group, as defined in [8]. We also state some results due to Kawanaka and

Matsuyama [11] and Bump and Ginzburg [8] which relate these models to a

generalization of the classical Frobenius–Schur indicator function.

Throughout, all groups are assumed finite. Recall that a Gel′fand model

of a group is a representation equivalent to the multiplicity free sum of all the

group’s irreducible representations. One can always form a Gel′fand model by

simply taking the direct sum of all irreducible representations, but one usually

desires to find some less obvious and more natural means of construction. One

way of achieving this is through models. The term “model” can mean several

different things; for our purposes, a model for a group G is a set {λi : Hi → C}
of linear characters of subgroups of G such that

∑
i Ind

G
Hi(λi) is the multiplicity

free sum of all irreducible characters of G. By definition, a model gives rise to

a Gel′fand model which is a monomial representation.

The set of characters forming a model can still appear quite arbitrary, so one

often investigates models satisfying some natural additional conditions. The
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classic example of this sort of specialization is the involution model. A model

{λi : Hi → C} is an involution model if there exists a set of representatives {ωi}
of the distinct conjugacy classes of involutions in G, such that each subgroup Hi

is the centralizer of ωi inG. This definition is made more flexible and hence more

useful if we introduce an additional degree of freedom. Fix an automorphism

τ ∈ Aut(G) such that τ2 = 1. We denote the action of τ on g ∈ G by τg or

τ(g); the group G then acts on the set of generalized involutions

IG,τ def
= {ω ∈ G : ω · τω = 1}

by the τ-twisted conjugation g : ω �→ g · ω · τg−1. Let

CG,τ (ω) = {g ∈ G : g · ω · τg−1 = ω}
denote the stabilizer of ω ∈ IG,τ in G under this action. We call CG,τ (ω) the

τ-twisted centralizer of ω in G and refer to the orbit of ω as its twisted

conjugacy class.

We now arrive at the definition of a generalized involution model given by

Bump and Ginzburg in [8]. A generalized involution model for G with respect

to τ is a model M for which there exists an injective map ι : M → IG,τ such

that the following hold:

(a) Each λ ∈ M is a linear character of the τ -twisted centralizer of

ι(λ) ∈ IG,τ in G.

(b) The image of ι contains exactly one element from each τ -twisted con-

jugacy class in IG,τ .
This is just the definition of an involution model with the word “centralizer”

replaced by “twisted-centralizer.” Indeed, an involution model is simply a gen-

eralized involution model with τ = 1.

Remark 2.1: The original definition of a generalized involution model in [8]

differs from this one in the following way: in [8], the set IG,τ is defined as

{ω ∈ G : ω · τω = z} where z ∈ Z(G) is a fixed central element with z2 = 1.

One can show using Theorems 2 and 3 in [8] that under this definition, any

generalized involution model with respect to τ, z is also a generalized involution

model with respect to τ ′, z′, where τ ′ is given by composing τ with an inner

automorphism and z′ = 1. Thus our definition is equivalent to the one in [8], in

the sense that the same models (that is, sets of linear characters) are classified

as generalized involution models.
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We study involution models and generalized involution models, as opposed

to other sorts of models, because the groups that can possibly possess them

satisfy natural requirements too stringent to encourage indifference to existence

questions. In other words, one often “expects” certain reasonable families of

groups to have generalized involution models, and this renders classification

problems interesting and tractable.

Let us illustrate this for involution models. Clearly an involution model

exists only if the sum of the degrees of all irreducible characters of G is equal

to the number of involutions in G. The Frobenius–Schur involution counting

theorem says more: namely, that this condition holds if and only if all the

irreducible representations of G are equivalent to real representations. Thus, if

every irreducible representation of G is realizable over R, then asking whether

G has an involution model is a natural question and one almost expects an

affirmative answer. In truth, the answer is often negative; Baddeley [7] proved

in his Ph.D. thesis that the Weyl groups without involution models are those of

type D2n (n > 1), E6, E7, E8, and F4. (Vinroot [22] extends this result to show

that of the remaining finite irreducible Coxeter groups, only the one of type H4

does not have an involution model.) However, we see from this classification

that at the very least, we have an engaging question on our hands.

Our reason for asking whether a group G has a generalized involution model

derives from a generalization of the Frobenius–Schur involution counting the-

orem due to Bump and Ginzburg [8]. To state this, let Irr(G) denote the

set of irreducible characters of G, and for each ψ ∈ Irr(G) let τψ denote the

irreducible character τψ = ψ ◦ τ . We define the twisted indicator function

ετ : Irr(G) → {−1, 0, 1} by

ετ (ψ) =

⎧⎪⎪⎨⎪⎪⎩
1, if ψ = tr ρ for a representation with ρ(g)=ρ(τg) for all g ∈ G;

0, if ψ 
= τψ;

−1, otherwise.

When τ = 1, this gives the familiar Frobenius–Schur indicator function.

Kawanaka and Matsuyama [11, Theorem 1.3] prove that ετ has the formula

ετ (ψ) =
1

|G|
∑
g∈G

ψ(g · τg), for ψ ∈ Irr(G).

In addition, we have the following result, which appears in a slightly different

form as Theorems 2 and 3 in [8].
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Theorem 2.1 (See Bump and Ginzburg [8]): Let G be a finite group with an

automorphism τ ∈ Aut(G) such that τ2 = 1. Then the following are equivalent:

(i) The function χ : G→ Q defined by

χ(g) = |{u ∈ G : u · τu = g}|, for g ∈ G

is the multiplicity-free sum of all irreducible characters of G.

(ii) Every irreducible character ψ of G has ετ (ψ) = 1.

(iii) The sum
∑

ψ∈Irr(G) ψ(1) is equal to |IG,τ | = |{ω ∈ G : ω · τω = 1}|.
This theorem motivates Bump and Ginzburg’s original definition of a gener-

alized involution model. In explanation, if the conditions (i)–(iii) hold, then the

dimension of any Gel′fand model for G is equal to
∑

i[G : CG,τ (ωi)] where ωi

ranges over a set of representatives of the distinct orbits in IG,τ . The twisted

centralizers of a set of orbit representatives in IG,τ thus present an obvious

choice for the subgroups {Hi} from which to construct a model {λi : Hi → C},
and one is naturally tempted to investigate whether G has a generalized invo-

lution model with respect to the automorphism τ .

Before moving on, we state an observation concerning the relationship be-

tween a generalized involution model and a corresponding Gel′fand model. In

particular, given τ ∈ Aut(G) with τ2 = 1 and a fixed subfield K of the complex

numbers C, let

(2) VG,τ = K-span{Cω : ω ∈ IG,τ}

be a vector space over K generated by the generalized involutions of G. We often

wish to translate a generalized involution model with respect to τ ∈ Aut(G)

into a Gel′fand model defined in the space VG,τ . The following lemma will be

of some use later in this regard.

Lemma 2.2: Let G be a finite group with an automorphism τ ∈ Aut(G) such

that τ2 = 1. Suppose there exists a function signG : G × IG,τ → K such that

the map ρ : G→ GL(VG,τ ) defined by

(3) ρ(g)Cω = signG(g, ω) · Cg·ω·τg−1 , for g ∈ G, ω ∈ IG,τ

is a representation. Then the following are equivalent:

(i) The representation ρ is a Gel′fand model for G.
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(ii) The functions{
signG(·, ω) : CG,τ (ω) → K

g �→ signG(g, ω)

}
,

with ω ranging over any set of orbit representatives of IG,τ , form a

generalized involution model for G.

Remark 2.2: If G has a generalized involution model {λi : Hi → K} with respect

to τ ∈ Aut(G), then there automatically exists a function signG : G×IG,τ → K

such that ρ is a representation and (i) and (ii) hold. One can construct this

function by considering the standard representation attached to the induced

character
∑
i Ind

G
Hi(λi).

Proof. This proof is an elementary exercise involving the definition of a rep-

resentation and the formula for an induced character, which we leave to the

reader.

Notation: In the following sections we employ the following notational conven-

tions:

• Let IG = IG,1 = {g ∈ G : g2 = 1}.
• Let CG(ω) = CG,1(ω) = {g ∈ G : gωg−1 = ω}.
• Let 11 = 11G be the trivial character defined by 11(g) = 1 for g ∈ G.

• The symbol ⊗ denotes the internal tensor product.

• The symbol � denotes the external tensor product.

Thus, if ρ, ρ′ are representations of G, then ρ⊗ ρ′ is a representation of G while

ρ� ρ′ is a representation of G×G, and similarly for characters.

3. Involution models for symmetric and alternating groups

In this section we review what is known of the generalized involution models

for the symmetric and alternating groups from [1, 8, 10]. Since the symmetric

group typically has a trivial center and a trivial outer automorphism group,

the group’s generalized involution models are always involution models in the

classical sense. In preparation for the next section, we quickly review the proof

of Theorem 1.2 in [1] using the results of [10]. In addition, we extend some

calculations in [8] to show that the alternating group An has a generalized

involution model if and only if n ≤ 7.



Vol. 192, 2012 GENERALIZED INVOLUTION MODELS 165

3.1. An involution model for the symmetric group. Klyachko [12, 13]

and Inglis, Richardson and Saxl [10] first constructed involution models for the

symmetric group; additional models for the symmetric group and related Weyl

groups appear in [3, 4, 5, 6, 16]. More recently, Adin, Postnikov and Roichman

[1] describe a simple combinatorial action which defines a Gel′fand model for

the symmetric group. Their construction turns out to derive directly from the

involution model in [10], and goes as follows. Let Sn be the symmetric group

of bijections {1, 2, . . . , n} → {1, 2, . . . , n} and define ISn = {ω ∈ Sn : ω2 = 1}.
Let

Vn = Q-span{Cω : ω ∈ ISn}
be a vector space with a basis indexed by ISn . For any permutation π ∈ Sn,

define two sets

Inv(π) = {(i, j) : 1 ≤ i < j ≤ n, π(i) > π(j)},
Pair(π) = {(i, j) : 1 ≤ i < j ≤ n, π(i) = j, π(j) = i}.

The set Inv(π) is the inversion set of π, and its cardinality is equal to the

minimum number of factors needed to write π as a product of simple reflections.

In particular, the value of the alternating character at π is sgn(π) = (−1)|Inv(π)|.
The set Pair(π) corresponds to the set of 2-cycles in π.

Define a map ρn : Sn → GL(Vn) by
ρn(π)Cω = signSn(π, ω) · Cπωπ−1 , for π, ω ∈ Sn, ω

2 = 1,

where

(4) signSn(π, ω) = (−1)|Inv(π)∩Pair(ω)|.

Adin, Postnikov and Roichman [1] prove the following result.

Theorem 3.1 (See Adin, Postnikov and Roichman [1]): The map ρn defines a

Gel′fand model for Sn.

Kodiyalam and Verma first proved this theorem in the unpublished preprint

[14], but their methods are considerably more technical than the ones used in

the later work [1]. We provide a very brief proof of this, using the results of

[10], which follows the strategy outlined in the appendix of [1]. This will serve

as a pattern for later results.

That ρn is a representation appears as Theorem 1.1 in [1]. We provide a

slightly simpler, alternate proof of this fact for completeness.
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Lemma 3.2: The map ρn : Sn → GL(Vn) is a representation.

Proof. It suffices to show that for ω ∈ ISn and π1, π2 ∈ Sn,

|Inv(π1π2)∩Pair(ω)| ≡ |Inv(π1)∩Pair(π2ωπ
−1
2 )|+ |Inv(π2)∩Pair(ω)| (mod 2).

Let Ac denote the set {(i, j) : 1 ≤ i < j ≤ n} \A. The preceding identity then

follows by considering the Venn diagram of the sets Inv(π1π2), Pair(ω), and

Inv(π2) and noting that

|Inv(π1) ∩ Pair(π2ωπ
−1
2 )| =|Inv(π1π2) ∩ Pair(ω) ∩ Inv(π2)

c|
+ |Inv(π1π2)c ∩ Pair(ω) ∩ Inv(π2)|,

since if i′ = π2(i) and j′ = π2(j), then we have i < j and (i′, j′) ∈
Inv(π1) ∩ Pair(π2ωπ

−1
2 ) if and only if (i, j) ∈ Inv(π1π2) ∩ Pair(ω) ∩ Inv(π2)

c;

and we have i > j and (i′, j′) ∈ Inv(π1) ∩ Pair(π2ωπ
−1
2 ) if and only if

(j, i) ∈ Inv(π1π2)
c ∩ Pair(ω) ∩ Inv(π2).

The preceding proof shows that as a map

signSn(·, ω) : CSn(ω) → C

π �→ (−1)|Inv(π)∩Pair(ω)|,

the symbol signSn(·, ω) defines a linear character of the centralizer CSn(ω). To

name this character more explicitly, observe that elements of CSn(ω) permute

the support of ω and also permute the set of fixed points of ω. In particular, if

ω ∈ ISn has f fixed points, then CSn(ω) is isomorphic to (S2 � Sk)× Sf , where

k = (n− f)/2 and where the wreath product S2 � Sk is embedded in Sn so that

the subgroup (S2)
k is generated by the 2-cycles of ω. We now have a more

intuitive definition of signSn(π, ω).

Corollary 3.3: The value of signSn(π, ω) for ω ∈ ISn and π ∈ CSn(ω) is the

signature of π as a permutation of the set {i : 1 ≤ i ≤ n, ω(i) 
= i}.
Proof. If in cycle notation ω = (i1 j1) · · · (ik jk) where each it < jt, then

CSn(ω) is generated by permutations of the three forms α, β, γ, where

α = (it it+1)(jt jt+1), β = (it jt), and γ fixes i1, j1, . . . , ik, jk. By inspec-

tion, our original definition of signSn(π, ω) agrees with the given formula when

π is one of these generators, and so our formula holds for all π ∈ CSn(ω) since

signSn(·, ω) : CSn(ω) → C× is a homomorphism.
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That ρn is a Gel′fand model now comes as a direct result of the following

lemma, given as Lemma 2 in [10]. In this statement, we implicitly identify

partitions with their Ferrers diagrams.

Lemma 3.4 (See Inglis, Richardson, Saxl [10]): Let ω ∈ Sn be an involution

fixing exactly f points. Then the induced character

IndSnCSn(ω)
(
signSn(·, ω)

)
is the multiplicity free sum of the irreducible character of Sn corresponding to

partitions of n with exactly f odd columns.

Corollary 3.5: The linear characters
{
signSn(·, ω) : CSn(ω) → C

}
, with ω

ranging over any set of representatives of the conjugacy classes in ISn , form an

involution model for Sn.

Theorem 3.1 now follows immediately by Lemma 2.2.

Remark 3.1: The result in [10] actually concerns the function signSn(·, ω)⊗ sgn,

whose value at π ∈ CSn(ω) is the signature of π as a permutation of the set

Fix(ω)
def
= {i : ω(i) = i}. Our version follows from the fact that tensoring with

the alternating character commutes with induction. Specifically, the authors

of [10] prove that if ω ∈ ISn is an involution with no fixed points, then the

induction of the trivial character IndSnCSn(ω)
(11) is equal to the multiplicity free

sum of the irreducible characters of Sn corresponding to partitions with all even

rows. Proposition 4.5 gives a generalization of this result.

3.2. Generalized involutions models for the alternating group. In

this section we classify all generalized involutions models for the alternating

groups An. Bump and Ginzburg consider this example in detail in [8], but stop

just short of a complete classification. We fill in this gap in their calculations

with the following proposition. Before stating it, recall that An is the kernel

of sgn : Sn → {±1}, and observe that for n > 6, An has a trivial center and a

nontrivial outer automorphism, which is unique up to composition with inner

automorphisms, given by any conjugation map g �→ xgx−1 with x ∈ Sn −An.

Proposition 3.6: The alternating group An (for n > 2) has a generalized

involution model with respect to an inner automorphism if and only if n ∈ {5, 6}
and with respect to an outer automorphism if and only if n ∈ {3, 4, 7}.
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Proof. Propositions 2 and 5 in [8] assert that An for n > 2 can have a gen-

eralized involution model with respect to the identity automorphism only if

n ∈ {5, 6, 10, 14}, and with respect to the outer automorphism g �→ (1 2)g(1 2)

only if n ∈ {3, 4, 7, 8, 12}. Bump and Ginzburg go on to discuss in [8] how to

explicitly construct generalized involution models in the cases n ∈ {3, 4, 5, 6, 7}.
To deal with the remaining cases, let n ∈ {8, 10, 12, 14} and suppose there exists

a generalized involution model {λi : Hi → C} with respect to τ ∈ Aut(An). We

argue by contradiction.

By Lemma 5.1 in [15], we may assume that τ = 1 if τ is inner and that τ

is conjugation by (1 2) ∈ Sn − An if τ is not inner. In the first (respectively,

second) case, the subgroups Hi are centralizers in An of a set of representatives

of the An-conjugacy classes of involutions in An (respectively, Sn − An). Let

ω ∈ Sn be an involution with two fixed points. Since ω ∈ An if n ≡ 2 (mod 4)

and ω ∈ Sn − An if n ≡ 0 (mod 4), it follows that some Hi is conjugate to

the subgroup CSn(ω) ∩ An. To prove the proposition, we will show that every

character induced to An from a linear character of CSn(ω) ∩ An fails to be

multiplicity free when n ∈ {8, 10, 12, 14}.
To this end, write n = 2k+2. We may assume ω = (1 2)(3 4) · · · (2k−1 2k) ∈

S2k ⊂ Sn; note that CSn(ω) = CS2k
(ω)× S2. Now, CSn(ω) ∩ An is a subgroup

of CSn(ω) of index two, and the larger group’s action by conjugation on the

degree one characters of the subgroup is trivial. Therefore each linear character

of CSn(ω) ∩ An is obtained by restricting a linear character of CSn(ω). The

linear characters of CSn(ω) are of the form λ� 11 or λ� sgn where λ is a linear

character of CS2k
(ω). Since λ�sgn and (λ⊗sgn)�11 have the same restriction to

CSn(ω)∩An, we may assume that an arbitrary linear character of CSn(ω)∩An is

obtained by restricting something of the form λ� 11. By Mackey’s theorem and

the transitivity of induction, it follows that any linear character of CSn(ω)∩An
induced to An is equal to

(5)

IndAnCSn(ω)∩An
(
Res

CSn(ω)

CSn(ω)∩An
(
λ� 11

))
=ResSnAn

(
IndSnCSn(ω)

(
λ� 11

))
=ResSnAn

(
IndSnS2k×S2

(
IndS2k

CS2k
(ω)(λ)� 11

))
for some linear character λ of C2k(ω). We claim that this is never multiplicity

free.

This follows by a calculation. Note that CS2k
(ω) ∼= S2 �Sk, where the wreath

subgroup (S2)
k ⊂ S2k is generated by the 2-cycles of ω. It follows by Clifford
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theory that CS2k
(ω) has four distinct linear characters λi : CS2k

(ω) → C defined

by
λ1(π) = 1,

λ2(π) = sgn(π),

λ3(π) = the signature of π as a permutation of

the set {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}},
λ4(π) = sgn(π) · λ3(π),

for π ∈ CS2k
(ω). The following fact proves our claim: for each i, the in-

duced character IndS2k

C2k(ω)
(λi) has two distinct constituents χ, χ′ such that

IndSnS2k×S2
(χ � 11) and IndSnS2k×S2

(χ′ � 11) have irreducible constituents indexed

either by the same partition or transpose partitions of n. Such characters have

the same restriction to An, and so (5) is not multiplicity free.

Table 1 illustrates this situation. The third column comes from Lemma 3.4

when i = 1, 2 and by a computer calculation using GAP when i = 3, 4. We

apply Pieri’s rule to the third column to obtain a pair of conjugate partitions

or a single partition with multiplicity two, which we list in the fourth column.

We recall that Pieri’s rule states that if χ is indexed by a partition μ of 2k,

then IndSnS2k×S2
(χ� 11) is the multiplicity free sum of the representations of Sn

indexed by all partitions of n obtained by adding two boxes to μ in distinct

columns. Observe that the partitions in the last column are transposes of each

other when distinct, which proves our claim above.

4. Generalized involution models for wreath products

The main goal of this section is to generalize Theorems 1 and 2 and Proposition

3 in [6]. Together, these extended results show how to construct a generalized

involution model for the wreath product H � Sn given a generalized involution

model for H . From this construction we will derive a simple proof in the next

section of Theorem 1.2 in [2].

Throughout, we fix a finite group H and a positive integer n and let Gn =

H � Sn, so that Gn is the semidirect product Gn = Hn � Sn where Sn acts on

Hn by permuting the coordinates of elements. We denote the action of π ∈ Sn

on h = (h1, . . . , hn) ∈ Hn by

π(h)
def
=
(
hπ−1(1), . . . , hπ−1(n)

)
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Table 1. Constituents of linear characters induced to Sn

n i Partitions of 2k = n− 2 indexing Partitions of n given by Pieri’s rule

two constituents of Ind
S2k
C2k(ω)(λi) on induction from Sn−2 × S2 to Sn

8 1 (4,2) and (2,2,2) ( 4,4) and (2,2,2,2)

2 (3,3) and (2,2,1,1) (4,3,1) and (3,2,2,1)

3 (3,3) and (4,1,1) (4,3,1) with multiplicity two

4 (2,2,2) and (3,1,1,1) (4,2,2) and (3,3,1,1)

10 1,2 (4,4) and (2,2,2,2) (5,4,1) and (3,2,2,2,1)

3 (4,3,1) and (5,1,1,1) (5,3,1,1) with multiplicity two

4 (3,2,2,1) and (4,1,1,1,1) (5,2,2,1) and (4,3,1,1,1)

12 1 (6,4) and (2,2,2,2,2) (6,6) and (2,2,2,2,2,2)

2 (5,5) and (3,3,2,2) (5,5,2) and (3,3,2,2,2)

3 (5,3,1,1) and (6,1,1,1,1) (6,3,1,1,1) with multiplicity two

4 (4,2,2,1,1) and (5,1,1,. . . ,1) (6,2,2,1,1) and (5,3,1,1,1,1)

14 1,2 (6,6) and (2,2,2,2,2,2) (7,6,1) and (3,2,2,2,2,2,1)

3 (6,3,1,1,1) and (7,1,1,. . . ,1) (7,3,1,1,1,1) with multiplicity two

4 (5,2,2,1,1,1) and (6,1,1,. . . ,1) (7,2,2,1,1,1) and (6,3,1,1,1,1,1)

and write elements of Gn as ordered pairs (h, π) with h ∈ Hn and π ∈ Sn. The

group’s multiplication is then given by

(h, π)(k, σ) = (σ−1(h) · k, πσ), for h, k ∈ Hn, π, σ ∈ Sn.

Throughout, we identify Hn and Sn with the subgroups {(h, 1) : h ∈ Hn} and

{(1, π) : π ∈ Sn} in Gn, respectively.

4.1. Irreducible characters of wreath products. To begin, we first

review the construction of the irreducible characters of Gn. Our notation mir-

rors but slightly differs from that in [6]. Given groups Hi and representations

�i : Hi → GL(Vi), for i = 1, . . . ,m, let⊙m
i=1 �i :

∏m
i=1Hi → GL (

⊗m
i=1 Vi)

denote the representation defined for hi ∈ Hi and vi ∈ Vi by

(
⊙m

i=1 �i) (h1, . . . , hm)(v1 ⊗ · · · ⊗ vm) = �1(h1)v1 ⊗ · · · ⊗ �m(hm)vm.

If χi is the character of �i, then we let
⊙m

i=1 χi denote the character of
⊙m

i=1 �i.
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Given a representation � : H → GL(V ), we extend
⊙n

i=1 � to a representation

of Gn by defining, for h ∈ Hn, π ∈ Sn, and vi ∈ V ,(⊙̃n
i=1 �

)
(h, π)(v1 ⊗ · · · ⊗ vn) = (w1 ⊗ · · · ⊗ wn) ,

where wi = �
(
hπ−1(i)

)
vπ−1(i) for i = 1, . . . , n.

Remark 4.1: Check that this formula defines a representation, but note that

it differs from the corresponding formula in [6]: there the right-hand side is(
�(h1)vπ−1(1) ⊗ · · · ⊗ �(hn)vπ−1(n)

)
. This is an artifact of our convention for

naming elements of Gn, which differs from the one implicitly used in [6], but

which will later make some of our formulas nicer.

Let P(n) denote the set of integer partitions of n ≥ 0 and let P=
⋃∞
n=0 P(n).

Given λ ∈ P(n), let ρλ denote the corresponding irreducible representation of

Sn and write χλ : Sn → Q for its character. We extend the representation ρλ

of Sn to a representation ρ̃λ of Gn by setting

ρ̃λ(h, π) = ρλ(π), for h ∈ Hn, π ∈ Sn.

If � is a representation of H and λ ∈ P(n), then we define � � λ as the repre-

sentation of Gn given by

� � λ def
=
(⊙̃n

i=1 �
)
⊗ ρ̃λ.

If ψ is the character of �, then we define ψ � λ as the character of � � λ. We now

have the following preliminary lemma.

Lemma 4.1: Let ψ be a character of H and let λ ∈ P(n). If the cycles of

π ∈ Sn are (it1 i
t
2 · · · it�(t)) for t = 1, . . . , r, then

(ψ � λ)(h, π) = χλ(π)
r∏
t=1

ψ
(
hit
�(t)

· · ·hit2hit1
)
, for h = (h1, . . . , hn) ∈ Hn.

Proof. Suppose ψ is the character of a representation � in a vector space V with

a basis {vj}. Observe that if hi1 , hi2 , . . . , hi� ∈ H , then

ψ (hi� · · ·hi2hi1)=
∑

j1,j2,...,j�

(
� (hi1) vj1

∣∣
vj2

)(
� (hi2) vj2

∣∣
vj3

)
· · ·
(
� (hi�) vj�

∣∣
vj1

)
.
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Therefore, writing wi = �
(
hπ−1(i)

)
vj
π−1(i)

, it follows by definition that

(ψ � λ)(h, π) = χλ(π)
∑

j1,...,jn

(w1 ⊗ · · · ⊗ wn)
∣∣
(vj1⊗···⊗vjn )

= χλ(π)
∑

j1,...,jn

n∏
i=1

(
� (hi) vji

∣∣
vjπ(i)

)

= χλ(π)

r∏
t=1

ψ
(
hit
�(t)

· · ·hit2hit1
)
.

Recall that Irr(G) denotes the set of irreducible characters of a finite group

G. Let PH denote the set of all maps θ : Irr(H) → P and define

PH(n) =
{
θ ∈ PH :

∑
ψ∈Irr(H) |θ(ψ)| = n

}
.

The following classification, which appears in [6] and as Theorem 4.1 in [21],

derives from Clifford theory. Stembridge [21] attributes its original proof to

Specht [18].

Theorem 4.2 (See Specht [18]): The set of irreducible characters of Gn is in

bijection with PH(n). In particular, each element of Irr(Gn) is equal to χθ for

a unique θ ∈ PH(n), where

χθ
def
= IndGnSθ

( ⊙
ψ∈Irr(H)

ψ � θ(ψ)
)

and Sθ
def
=

∏
ψ∈Irr(H)

G|θ(ψ)|.

In addition, the degree of the character χθ is

deg(χθ) = n!
∏

ψ∈Irr(H)

deg(ψ)|θ(ψ)| deg
(
χθ(ψ)

)
|θ(ψ)|! .

All products here proceed in the order of some fixed enumeration of Irr(H).

The character χθ is independent of this enumeration because reordering the

factors in Sθ yields a conjugate subgroup.

4.2. Inducing the trivial character. Fix an automorphism τ ∈ Aut(H)

with τ2 = 1. In this section, we describe the irreducible constituents of the

induced character

IndG2k

V τk
(11),

where 11 ∈ Irr(V τk ) denotes the trivial character of V τk , a subgroup which will

be one of the twisted centralizers in our generalized involution model.
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Fix a nonnegative integer k, and define Wk ⊂ S2k as the subgroup

(6) Wk = ξ(S2 � Sk),

where ξ : S2 � Sk → S2k embeds S2 � Sk in S2k such that the wreath subgroup

(S2)k ⊂ S2 � Sk is mapped to the subgroup of S2k generated by the simple

transpositions (2i − 1 2i) for i = 1, . . . , k. In other words, let Wk be the

centralizer in S2k of the involution

(7) ωk
def
= (1 2)(3 4) · · · (2k − 1 2k) ∈ S2k,

where by convention ω0 = 1. Next, define δτk (H) as the following subgroup of

H2k:

δτk(H) = {(h1, τh1, h2, τh2, . . . , hk, τhk) : hi ∈ H} .

Observe that the action ofWk preserves δτk (H), and let V τk denote the subgroup

of G2k given by

V τk = δτk(H) ·Wk = {(h, π) ∈ G2k : h ∈ δτk(H), π ∈Wk} .

This subgroup will be one of the key building blocks in our construction of the

twisted centralizers whose linear characters will comprise a generalized involu-

tion model for Gn. In fact, the critical step in constructing a model for Gn from

a model for H will be to determine the irreducible constituents of the character

of Gn induced from the trivial character of the subgroup V τk . The following two

lemmas address some of the calculations needed to compute this.

Lemma 4.3: Let ψ be an irreducible character of H with ετ (ψ) = ±1 and let

λ ∈ P(2k). Then

〈
11,ResG2k

V τk
(ψ � λ)

〉
V τk

=

⎧⎪⎪⎨⎪⎪⎩
1, if ετ (ψ) = 1 and λ has all even rows;

1, if ετ (ψ) = −1 and λ has all even columns;

0, otherwise.

Proof. Fix π ∈ Wk. The cycles of π are either of the form (2is − 1, 2is) for

s = 1, . . . , S, or come in pairs of the form (it1 i
t
2 · · · it�(t)), (jt1 jt2 · · · jt�(t)) for

t = 1, . . . , T , where (ita j
t
a) is a cycle of ωk for each a, t. If h ∈ δτk (H), then in

the former case hk+is = τhis and in the latter case hjta = τhita . In addition,
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note that sgn(π) = (−1)S. By Lemma 4.1,
∑
h∈δτk (H)(ψ � λ)(h, π) is equal to

χλ(π)
∑

h∈δτ
k
(H)

S∏
s=1

ψ (hk+ishis)
T∏
t=1

ψ
(
hit
�(t)

· · ·hit2hit1
)
χψ
(
hjt
�(t)

· · ·hjt2hjt1
)

which in turn may be rewritten as

χλ(π)

S∏
s=1

(∑
h∈H

ψ (h · τh)
) T∏
t=1

( ∑
h1,...,h�(t)∈H

ψ
(
h1 · · ·h�(t)

)
ψ
(
τh1 · · · τh�(t)

))
.

We have ψ(h) = ψ(τh−1) since ετ (ψ) = ±1. Therefore,∑
h1,...,h�(t)∈H

ψ
(
h1 · · ·h�(t)

)
ψ
(
τh1 · · · τh�(t)

)
= |H |�(t)−1

∑
h∈H

ψ (h)ψ (τh−1)

= |H |�(t)〈ψ, ψ〉H = |H |�(t).
Substituting this and ετ (ψ) = 1

|H|
∑

h∈H ψ (h · τh) into our expression above,

and noting that 2S +
∑T
t=1 2�(t) = 2k, we obtain

∑
h∈δτk (H)(ψ � λ)(h, π) =

|H |k(ετ (ψ))Sχλ(π).
Since sgn(π) = (−1)S , applying this identity gives〈

11,ResG2k

V τk
(ψ � λ)

〉
V τk

=
1

|V τk |
∑
π∈Wk

∑
h∈δτk (H)

(ψ � λ)(h, π)

=

⎧⎨⎩〈11,ResS2k

Wk
(χλ)〉Wk

, if ετ (ψ) = 1;

〈sgn,ResS2k

Wk
(χλ)〉Wk

, if ετ (ψ) = −1.

Our result now follows from applying Frobenius reciprocity to Lemma 3.4.

Define another subgroup of G2k by

Iτk =
{
(h, (π, π)) ∈ G2k : h = (h1, . . . , hk,

τh1, . . . ,
τhk) ∈ H2k, π ∈ Sk

}
where we view (π, π) ∈ Sk × Sk as an element of S2k in the obvious way. We

then have a second lemma.

Lemma 4.4: Let ψ be an irreducible character of H with ετ (ψ) = 0 and let

λ, μ ∈ P(k). Define �k ∈ S2k ⊂ G2k as the permutation given by

�k(2i− 1) = i,

�k(2i) = i+ k,
for i = 1, . . . , k.
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Then Iτk = (Gk ×Gk) ∩�−1
k (V τk )�k and

〈
11,ResGk×GkIτ

k

(
(ψ � λ)� (τψ � μ)

)〉
Iτk

=

⎧⎨⎩1, if λ = μ;

0, otherwise.

Proof. We first observe that if ω=(1 k + 1)(2 k + 2) · · · (k 2k)=�kωk�
−1
k ∈S2k,

then

�−1
k (V τk )�k =

{
(h, π) : π ∈ CS2k

(ω), h = (h1, . . . , hk,
τh1, . . . ,

τhk) ∈ H2k
}
.

It immediately follows that Iτk = (Gk × Gk) ∩ �−1
k (V τk )�k. Next note that

τψ(τh) = ψ(h) for h ∈ H and that χμ ∈ Irr(Sn) is real-valued. Hence(
τψ � μ

)
(τh, π) = (ψ � μ)(h, π), for π ∈ Sk and h ∈ Hk,

where we let τh = (τh1, . . . ,
τhk). Therefore by Lemma 4.1 and an argument

similar to the one used in the previous lemma, if π ∈ Sk then we have∑
h∈Hk

(ψ � λ)(h, π) · (τψ � μ)(τh, π) =
∑
h∈Hk

(ψ � λ)(h, π) · (ψ � μ)(h, π)

= |H |kχλ(π)χμ(π).
Our result now follows from〈
11,ResGk×GkIτk

(
(ψ � λ)� (τψ � μ)

)〉
Iτk

=
1

|Iτk |
∑

(π,h)∈Iτk

(
(ψ � λ)� (τψ � μ)

)
(h, π)

=
1

|Iτk |
∑
π∈Sk

∑
h∈Hk

(ψ �λ)(h, π)·(τψ �μ)(τh, π)

=〈χλ, χμ〉Sk .
We are now prepared to prove the following instrumental proposition.

Proposition 4.5: The induction of the trivial character of V τk to G2k decom-

poses as the multiplicity free sum

IndG2k

V τk
(11) =

∑
θ

χθ,

where the sum is over all θ ∈ PH(2k) such that for every irreducible character

ψ ∈ Irr(H),

(i) θ(ψ) = θ(τψ);

(ii) θ(ψ) has all even columns if ετ (ψ) = −1;

(iii) θ(ψ) has all even rows if ετ (ψ) = 1.
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This result generalizes Proposition 3 in [6], which treats the case τ = 1. Our

proof derives from a pair of detailed but straightforward calculations using the

preceding lemmas. This approach differs somewhat from the inductive method

used by Baddeley in [6].

Proof. Choose θ ∈ PH(2k) satisfying (i)–(iii). We first show that χθ appears as

a constituent of IndG2k

V τk
(11) and then demonstrate that the given decomposition

has the correct degree. To this end, define

ηθ =
⊙

ψ∈Irr(H)

ψ � θ(ψ), so that χθ = IndG2k

Sθ
(ηθ).

Let s ∈ S2k and define the subgroup Ds = Sθ ∩ s−1(V τk )s. Then by Frobenius

reciprocity and Mackey’s theorem, we have

〈
IndG2k

V τk
(11), χθ

〉
G2k

=
〈
ResG2k

Sθ

(
IndG2k

V τk
(11)
)
, ηθ

〉
Sθ

(by Frobenius recipr.)

≥
〈
IndSθDs (11) , ηθ

〉
Sθ

(by Mackey’s theorem)

=
〈
11,ResSθDs(ηθ)

〉
Ds

(by Frobenius recipr.).

Recall from Section 2 that if ψ ∈ Irr(H) then the two irreducible characters

ψ, τψ of H are distinct if and only if ετ (ψ) = 0. Therefore we can list the

distinct elements of Irr(H) in the form

ψ1, ψ
′
1, . . . , ψr, ψ

′
r, ϑ1, . . . , ϑs,

where for all i we have ψ′
i = τψi and ετ (ψi) = ετ (ψ

′
i) = 0 and ετ (ϑi) 
= 0.

Without loss of generality, we can assume that the products defining ρθ and Sθ

proceed in the order of this list; a different ordering corresponds to a conjugate

choice of s in what follows. Since |θ(ψi)| = |θ(ψ′
i)| and |θ(ϑi)| is even for all i,

if we define s ∈ S2k as the element

s =
(
�|θ(ψ1)|, . . . , �|θ(ψr)|, 1, . . . , 1

) ∈ r∏
i=1

S|θ(ψi)|+|θ(ψ′
i)| ×

s∏
i=1

S|θ(ϑi)| ⊂ S2k,
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where �k for k = |θ(ψ1)|, . . . , |θ(ψr)| is as in Lemma 4.4, then Ds =∏r
i=1 I

τ
|θ(ψi)| ×

∏s
i=1 V

τ
|θ(ϑi)|/2. Consequently 〈11,ResSθDs(ηθ)〉Ds = ε0ε±1 where

ε0 =
r∏
i=1

〈
11,Res

G|θ(ψi)|×G|θ(ψ′
i
)|

Iτ|θ(ψi)|
((ψi � θ(ψi))� (ψ′

i � θ(ψ′
i)))

〉
Iτ|θ(ψi)|

,

ε±1 =

s∏
i=1

〈
11,Res

G|θ(ϑi)|
V τ|θ(ϑi)|/2

(ϑi � θ(ϑi))
〉
V τ|θ(ϑi)|/2

.

We have ε0 = 1 by Lemma 4.4 and ε±1 = 1 by Lemma 4.3 and so we conclude

that if θ ∈ PH(n) satisfies (i)–(iii), then χθ appears as a constituent of Ind
Gn
V τk

(11)

with multiplicity at least one.

To prove that this multiplicity is exactly one and that these are the only con-

stituents, we show that both sides of the equation in the proposition statement

have the same degree. Define F as the set of functions f : Irr(H) → Z≥0 which

have f(ψ) = |θ(ψ)| for some θ ∈ PH(2k) satisfying (i)–(iii). Then the sum of

the degrees of χθ as θ ∈ PH(2k) varies over all maps satisfying (i)–(iii) is∑
θ

deg(χθ) =
∑
θ

(2k)!
∏

ψ∈Irr(H)

deg(ψ)|θ(ψ)| deg
(
χθ(ψ)

)
θ(ψ)!

=
∑
f∈F

n! Π0(f) Π+(f)Π−(f),

where

Π0(f) =

r∏
i=1

( ∑
λ∈P(f(ψi))

(deg(ψi)f(ψi) deg (χλ)
f(ψi)!

)(deg(ψ′
i)
f(ψ′

i) deg
(
χλ
)

f(ψ′
i)!

))
,

and

Π+(f) =
∏

ψ∈Irr(H)
ετ (ψ)=1

( ∑
λ∈P(f(ψ)) with

all even rows

deg(ψ)f(ψ) deg
(
χλ
)

f(ψ)!

)

and

Π−(f) =
∏

ψ∈Irr(H)
ετ (ψ)=−1

( ∑
λ∈P(f(ψ)) with
all even columns

deg(ψ)f(ψ) deg
(
χλ
)

f(ψ)!

)
.

Note that deg(ψi) = deg(ψ′
i) and f(ψi) = f(ψ′

i) for all i if f ∈ F . Therefore,

Π0(f) =

r∏
i=1

deg(ψi)
2f(ψi)

(f(ψi)!)2

( ∑
λ∈P(f(ψi))

deg
(
χλ
)2)

=

r∏
i=1

(
2 deg(ψi)

2
)f(ψi)

2f(ψi)f(ψi)!
.
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Next, recall from Lemma 3.4 that the sum
∑

λ deg
(
χλ
)
as λ varies over the

partitions of 2n with all even rows is equal to (2n)!
2nn! , and that the sum over λ

with all even columns has the same value. Thus

Π+(f)Π−(f) =
s∏
i=1

(
deg(ϑi)

2
)f(ϑi)/2

2f(ϑi)/2 (f(ϑi)/2)!
.

As f varies over all elements of F , the numbers f(ψ1), . . . , f(ψr),

f(ϑ1)/2, . . . , f(ϑs)/2 range over all compositions of k. Therefore, following sub-

stitutions in the preceding expressions, we obtain by the multinomial formula

∑
θ

deg(χθ) =
(2k)!

2kk!

∑
f∈F

k!

r∏
i=1

(
2 deg(ψi)

2
)f(ψi)

f(ψi)!

s∏
i=1

(
deg(ϑi)

2
)f(ϑi)/2

(f(ϑi)/2)!

=
(2k)!

2kk!

(
r∑
i=1

2 deg(ψi)
2 +

s∑
i=1

deg(ϑi)
2

)k

=
(2k)!

2kk!

( ∑
ψ∈Irr(H)

deg(ψ)2
)k

=
|G2k|
|V τk |

.

Since this is precisely the degree of IndGnV τk
(11), the given decomposition now

follows by dimensional considerations.

4.3. Construction of a model. With this proposition in hand, we can now

construct a generalized involution model for Gn from any generalized involution

model for H . As above, we fix an automorphism τ ∈ Aut(H) with τ2 = 1.

Throughout this section, we assume there exists a model for H given by a set

of linear characters {λi : Hi → C}mi=1 for some positive integer m and some

subgroups Hi ⊂ H .

Our notation is intended to coincide with that of [6] when τ = 1. Let Um

denote the set of vectors (x0, x1, . . . , xm) with all entries nonnegative integers,

and define

Um(n) =

{
x ∈ Um : 2x0 +

m∑
i=1

xi = n

}
.

Let στk : V τk → {±1} be the linear character given by

στk (h, π) = sgn(π), for (h, π) ∈ V τk .
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For each x ∈ Um(n), we define a subgroup Gτx ⊂ Gn and a linear character

φτx : Gτx → C by

(8) Gτx = V τx0
×

m∏
i=1

(Hi � Sxi) and φτx = στx0
�

m⊙
i=1

(λi � (xi)) ,

where on the right-hand side (xi) denotes the trivial partition in P(xi) and we

ignore terms corresponding to i if xi = 0.

Given x ∈ Um(n), define

R(x) =

⎧⎪⎨⎪⎩θ ∈ PH(n) :

For each i > 0, xi is the sum of the number

of odd columns in θ(ψ) as ψ ranges over

the irreducible constituents of IndHHi(λi)

⎫⎪⎬⎪⎭ .

We then have the following extension of Theorem 1 in [6], which treats the

special case τ = 1.

Theorem 4.6: Suppose ετ (ψ) = 1 for every irreducible character ψ ofH . Then

IndGnGτx (φ
τ
x) =

∑
θ∈R(x)

χθ, for x ∈ Um(n),

and {φτx : Gτx → C}x∈Um(n) is a model for Gn = H � Sn.
The proof of this is in principle the same as that of [6, Theorem 1] with all

references to Baddeley’s Proposition 3 replaced by ones to our Proposition 4.5.

This does not quite work in practice, however, since Baddeley’s proof in [6]

makes no mention of Proposition 3 and instead uses two intermediate results

which we have sidestepped. For completeness we therefore give the following

proof.

Proof. By the transitivity of induction we have

(9)

IndGnGτx (φ
τ
x) = IndGnG2x0×Gx1×···×Gxm

(
Ind

G2x0

V τx0
(στx0

)�
m⊙
i=1

Ind
Gxi
Hi�Sxi (λi � (xi))

)
.

Note that if θ ∈ PH(n), then χθ ⊗ s̃gn = χθ′ where θ
′ ∈ PH(n) is defined by

setting θ′(ψ) equal to the transpose of θ(ψ). Therefore, since ετ (ψ) = 1 for all

ψ ∈ Irr(H), we have by Proposition 4.5 that

IndG2k

V τk
(στk ) = IndG2k

V τk
(11)⊗ s̃gn =

∑
θ

ρθ,
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where the sum ranges over all θ ∈ PH(n) such that θ(ψ) has all even columns

for all ψ ∈ Irr(H). Also, Proposition 1 in [6] states that Ind
Gxi
Hi�Sxi (λi � (xi)) =∑

θ χθ where the sum is over all θ ∈ PH(xi) such that θ(ψ) is the zero partition

if ψ is not a constituent of IndHHi(λi) and a trivial partition otherwise.

Given these facts, we can completely decompose IndGnGτx (φ
τ
x) by using Lemma

1 in [6], which shows that if ψ is a representation of H and α ∈ P(a) and

β ∈ P(b), then Ind
Ga+b
Ga×Gb ((ψ � α)� (ψ � β)) =

∑
γ∈P(a+b) c

γ
α,β(ψ � γ) where

the coefficients cγα,β are the nonnegative integers afforded by the Littlewood–

Richardson rule. Thus, after applying our substitutions to (9) we can invoke

Young’s rule to obtain the desired decomposition.

The automorphism τ ∈ Aut(H) naturally extends to an automorphism of Hn

and of Gn via the definitions

(10)

τ
(h1, . . . , hn)

def
= (τh1, . . . ,

τhn), for (h1, . . . , hn) ∈ Hn,

τ
(h, π)

def
= (τh, π), for π ∈ Sn, h ∈ Hn.

As in (7), let ωk = (1 2)(3 4) · · · (2k− 1 2k) ∈ S2k, where by convention ω0 = 1.

We now have the following generalization of Theorem 2 in [6].

Theorem 4.7: Suppose {λi : Hi → C}mi=1 is a generalized involution model

for H with respect to τ ∈ Aut(H), so that there exists a set {εi}mi=1 of orbit

representatives in IH,τ with Hi = CH,τ (εi). For each x ∈ Um(n), define

εx =

(
(1, . . . , 1︸ ︷︷ ︸
2x0 times

, ε1, . . . , ε1︸ ︷︷ ︸
x1 times

, ε2, . . . , ε2︸ ︷︷ ︸
x2 times

, . . . , εm, . . . , εm︸ ︷︷ ︸
xm times

), ωx0

)
∈ Gn.

If we extend τ to an automorphism of Gn by (10), then the linear characters

{φτx : Gτx → C}x∈Um(x) form a generalized involution model for Gn with respect

to τ .

Proof. By Theorem 2.1, we have ετ (ψ) = 1 for all ψ ∈ Irr(H). Since {λi}mi=1

is a model for H , it follows from Theorem 4.6 that {φτx}x∈Um(x) is a model for

Gn. To show that this model is a generalized involution model, we must prove

both of the following:

(a) For each x ∈ Um(n), the group Gτx is the τ -twisted centralizer in Gn of

εx ∈ IGn,τ .
(b) The set {εx}x∈Um(n) contains exactly one element from each orbit in

IGn,τ .
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To this end, fix x ∈ Um(n) and let ε′x ∈ Hn be the element with εx = (ε′x, ωx0).

Since ε′x · τε′x = 1 ∈ Hn and ωx0(ε
′
x) = ε′x by assumption, we have εx ∈ IGn,τ .

Next, let π ∈ Sn and h ∈ Hn and consider the twisted conjugation of εx by

the arbitrary element g =
(
π−1(h), π

) ∈ Gn. This gives

(11) (k, σ)
def
= g · εx · τg−1 =

(
πωx0π

−1(h) · π(ε′x) · τh−1, πωx0π
−1
)
.

Hence g ∈ CGn,τ (ωx) only if π ∈ CSn(ωx0). Assume this, and define J0 =

{1, . . . , 2x0} and Ji={2x0 + (x1 + · · ·+ xi−1) + j : 1 ≤ j ≤ xi} for i=1, . . . ,m.

Then π permutes the sets J0 and J1 ∪ · · · ∪ Jm, so

(12) kj =

⎧⎨⎩hj′ ·
τh−1

j , if j ∈ J0, where j
′ = ωx0(j);

hj · εi · τh−1
j , otherwise, where i is the index with π−1(j) ∈ Ji.

It follows from the first case in this identity that k = ε′x only if hj′ =
τhj for all

j ∈ J0. It follows from the second case that if j ∈ J1∪· · ·∪Jm then kj lies in the

H-orbit of εi, where i is the unique index with π−1(j) ∈ Ji. Thus, k = ε′x only

if π also permutes each of the sets Ji and hj ∈ CH,τ (εi) = Hi for all j ∈ Ji and

i = 1, . . . ,m. Combining these observations, we see that g ∈ CGn,τ (εx) only if

g ∈ Gτx. The reverse implication follows easily, and so we have CGn,τ (εx) = Gτx.

It remains to show that the elements εx for x ∈ Um(n) represent the distinct

τ -twisted conjugacy classes in IGn,τ . This requires a straightforward but tedious
calculation, similar to the one in the previous paragraph. We leave this to the

reader.

We conclude this section with an observation on how to construct a Gel′fand
model for Gn from a generalized involution model for H . To make our notation

more concise, we adopt the following convention: given g = (h, π) ∈ Gn, define

|g| ∈ Sn and zg : {1, . . . , n} → H by

(13) |g| = π ∈ Sn and zg(i) = hi ∈ H.

We can identify Gn with the set of n × n matrices which have exactly one

nonzero entry in each row and column, and whose nonzero entries are elements

of H . Viewing g ∈ Gn as a matrix of this form, |g| is the matrix given by

replacing each nonzero entry of g with 1, and zg(i) is the value of the nonzero

entry of the matrix g in the ith column.

In the following statement, it helps to recall the definition of signSn from (4).

The symbol τ continues to denote a fixed automorphism ofH with τ2 = 1, which
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we have extended to an automorphism of Gn by (10). Also, K here denotes a

fixed subfield of C and VH,τ , VG,τ are the vector spaces over K defined by (2).

Proposition 4.8: Suppose signH : H × IH,τ → K is a function such that the

map ρ : H → GL(VH,τ ) defined by

ρ(h)Cω = signH(h, ω) · Ch·ω·τh−1 , for h ∈ H, ω ∈ IH,τ
is a Gel′fand model for H . Then the map ρn,H : Gn → GL(VG,τ ) defined by

ρn,H(g)Cω = signGn(g, ω) · Cg·ω·τ g−1 , for g ∈ Gn, ω ∈ IGn,τ ,
where

signGn(g, ω) = signSn(|g|, |ω|)
∏

i∈Fix(|ω|)
signH(zg(i), zω(i)),

is a Gel′fand model for Gn = H � Sn.
Proof. By Lemma 2.2, H possesses a generalized involution model

{λi : Hi → K}mi=1 with respect to τ . Retaining the notation of Theorem

4.7, we may assume without loss of generality that λi(h) = signH(h, εi) for

all h ∈ Hi and Hi = CH,τ (εi) for each i = 1, . . . ,m. To prove that ρn,H

is a Gel′fand model, it suffices by Lemma 2.2 to show only two things: that

φτx(g) = signGn(g, εx) for all g ∈ Gτx and each x ∈ Um(n), and that ρn,H is a

representation.

To this end, fix x ∈ Um(n) and consider g ∈ Hi � Sxi . Since λi is a linear

character, we have by Lemma 4.1 that

(λi � (xi))(g) =
xi∏
j=1

λi(zg(j)) =

xi∏
j=1

signH(zg(j), εi).

Thus if g = (g0, g1, . . . , gm)∈Gτx, where g0∈V τx0
and gi∈Hi�Sxi for i = 1, . . . ,m,

then

φτx(g) = στx0
(g0)

m∏
i=1

(λi � xi)(gi)

= signSn(|g|, |εx|)
∏

i∈Fix(ωx)

signH(zg(i), zωx(i)) = signGn(g, εx).

It remains to show that ρn,A is a representation. Let g, h ∈ Gn and ω ∈ IGn,τ
and write ω′ = h · ω · τh−1. First, by Lemma 3.1 we have

(14) signSn(|g|, |ω′|) · signSn(|h|, |ω|) = signSn(|gh|, |ω|).
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Now let π = |h|. Choose i ∈ Fix(|ω|) and observe that π(i) ∈ Fix(|ω′|). It

follows from the fact that ω · τω = ω′ · τω′ = 1 that both zω(i) and zω′ ◦ π(i)
belong to IH,τ . Furthermore, one can check that

zg ◦ π(i) · zh(i) = zgh(i) and zω′ ◦ π(i) = zh(i) · zω(i) · τzh(i)−1.

Since signH(a, b ·x · τb−1) · signH(b, x) = signH(ab, x) for a, b ∈ H and x ∈ IH,τ ,
it follows that

(15) signH(zg ◦ π(i), zω′ ◦ π(i)) · signH(zh(i), zω(i)) = signH(zgh(i), zω(i)).

Since Fix(|ω′|) = {π(i) : i ∈ Fix(|ω|)}, combining the identities (14) and (15)

shows that signGn(g, ω
′) · signGn(h, ω) = signGn(gh, ω), which suffices to show

that ρn,H is a representation, and therefore a Gel′fand model.

5. Applications

As an application of Theorem 4.7, we construct in this section a generalized in-

volution model and a Gel′fand model for Gn = H � Sn when H is abelian. This

gives a simple proof of Theorem 1.2 in [2], which asserts that the representation

ρr,n from the introduction is a Gel′fand model for Gn in the special case that

H is the cyclic group of order r. Using Theorem 4.6, we prove some facts con-

cerning the decomposition of this representation into irreducible constituents,

and in so doing prove a conjecture of Adin, Postnikov and Roichman from [2].

Throughout this section, let A be a finite abelian group and let τ ∈ Aut(A)

be the automorphism defined by τa = a−1. For this particular case, we note

that

IA = {a ∈ A : a2 = 1},
IA,τ = {a ∈ A : a · τa = 1} = A,

CA(a) = {b ∈ A : bab−1 = a} = A,

CA,τ (a) = {b ∈ A : b · a · τb−1 = a} = IA.
The automorphism τ gives rise to the following generalized involution model

for A.

Lemma 5.1: If A is abelian, then the set Irr(IA) of all irreducible characters

of the subgroup IA = {a ∈ A : a2 = 1} forms a generalized involution model

for A with respect to the automorphism τ : a �→ a−1. In particular, for each

λ ∈ Irr(IA), the induced character IndAIA(λ) is the sum of all ψ ∈ Irr(A) with

ResAIA(ψ) = λ.
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Remark 5.1: This generalized involution model is clearly unique, up to the

arbitrary assignment of irreducible representations of IA to orbits in IA,τ , since
we must have IA,τ = A as the degree of any Gel′fand model for A is |A|.
Proof. Since IA,τ = A and IA = CA,τ (a) for every a ∈ A, there are |IA| distinct
twisted conjugacy classes in IA,τ and so each irreducible character of IA can be

viewed as a linear character of the τ -twisted centralizer of a representative of a

distinct orbit in IA,τ . The claimed decomposition of IndAIA(λ) is immediate by

Frobenius reciprocity, and since each element of Irr(A) restricts to an element

of Irr(IA), our assertion follows.

Seeing this result, we naturally want to use Proposition 4.8 to obtain a

Gel′fand model for the wreath product A �Sn. In order to do this, we must first

define a function signA : A×A→ C which corresponds to the generalized invo-

lution model for A just described. We will define this function in two different

ways: first from a completely abstract standpoint which does depend on the

structure of A, and then with an explicit construction which relies on a given

decomposition of A as a direct product of cyclic groups.

For our first definition, we must introduce a few pieces of notation to keep

track of our arbitrary but unspecified sets of orbit representatives. Let B =

{a2 : a ∈ A} and observe that the cosets of this subgroup in A are precisely the

orbits in IA,τ under the twisted conjugacy action a : x �→ a · x · τa−1 = a2x.

Fix a bijection between A/B and Irr(IA), and for each x ∈ A, let λx : IA → C

denote the linear character corresponding to the orbit xB. Now choose two

maps

s̃orb : A/B → A and s̃ : A/IA → A,

assigning representatives to the cosets of B and IA in A, and let

sorb(a) = s̃orb(aB) and s(a) = s̃(aIA), for a ∈ A.

The image of sorb is then a set of orbit representatives in A, which explains our

notation. Our next definition is our most complicated: let q : A → A be the

map

q(a) = s̃
({
b ∈ A : sorb(a) · b2 = a

})
, for a ∈ A.

The set
{
b ∈ A : sorb(a) · b2 = a

}
is a coset of IA in A and so the map q is

well-defined. We can think of the value of q(a) as the square root of a modulo

B. In the case that A is cyclic, q has a much more direct formula which we will

compute.
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We now define signA : A×A→ C as the function

(16) signA(a, x) = λx

(
a · q(x) · s (a · q(x))−1

)
and let ρA : A→ GL(VA,τ ) be the map given by

(17) ρA(a)Cx = signA(a, x) · Ca2x, for a, x ∈ A.

These definitions come with the following result.

Proposition 5.2: The map ρA is a Gel′fand model for the abelian group A.

Proof. If a ∈ IA, then s(a · q(x)) = s(q(x)) = q(x) and so signA(a, x) = λx(a).

Therefore, by Lemma 2.2 and the preceding lemma, it suffices to show that ρA

is a representation. For this, fix a, b, x ∈ A and observe that q(b2x) = s(b · q(x))
since

sorb(x) · (b · q(x))2 = b2 · sorb(x) · q(x)2 = b2x.

In addition, since s(c)IA = cIA for all c ∈ A, we have s (a · s(b · q(x))) =

s (ab · q(x)). Thus, since λx = λb2x by construction,

signA(a, b
2x) = λx

(
a · s(b · q(x)) · s (ab · q(x))−1

)
and so signA(b, x) · signA(a, b2x) = signA(ab, x), which suffices to show that ρA

is a representation.

Using this abstract formulation, we can provide a concrete definition of signA
using the structure of A as a finite abelian group. For any two integers a ≤ b,

let [a, b] = {i ∈ Z : a ≤ i ≤ b}. Identify the cyclic group Zr with the set

[0, r−1] so that the group operation is addition modulo r, and define a function

signr : Zr × Zr → {±1} by

signr(a, x) =

⎧⎪⎪⎨⎪⎪⎩
−1, if r is even and there exists k ∈ [0, r/2− 1]

with x = 2k + 1 and a+ k ∈ [r/2, r − 1];

1, otherwise;

for a, x ∈ Zr. If A =
∏k
i=1 Zri where each ri is a prime power, then we define

signA : A×A→ {±1} by

(18) signA(a, x) =
k∏
i=1

signri(ai, xi),
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for a = (a1, . . . , ak) ∈ A and x = (x1, . . . , xk) ∈ A. Every finite abelian

group is isomorphic to a direct product of this form which is unique up to

rearrangement of factors, so the formula (18) is well-defined for all abelian

groups. The definition (18) is just a special case of (16), which explains the

following corollary.

Corollary 5.3: If A is abelian then the map ρA with signA defined by (18)

is a Gel′fand model.

Proof. It suffices to prove this when A = Zr is cyclic; for this we only need to

show that signA = signr for some choice of the sections sorb and s and of the

arbitrary correspondence between orbits in IA,τ and irreducible representations

of IA. If r is odd then this always happens, since IA = {1}, so signA(a, x) =

signr(a, x) = 1 for all a, x ∈ A. Suppose r is even. Then IA = {0, r/2}; the
cosets A/IA are [0, r/2 − 1] and [r/2, r − 1]; and the two orbits in IA,τ = A

are given by the sets of odd and even integers in [0, r − 1]. Assign the trivial

representation of IA to the even orbit and the nontrivial representation to the

odd orbit, so that the notation λx : IA → C becomes

λx(0) = 1 and λx(r/2) =

⎧⎨⎩1, if x is even;

−1, if x is odd;
for x ∈ A.

If we define the sections sorb and s by

sorb(a) =

⎧⎨⎩0, if a is even;

1, if a is odd;
and s(a) =

⎧⎨⎩a, if a ∈ [0, r/2− 1];

a− r/2, if a ∈ [r/2, r − 1];

then the function q : A → A is given by the simple formula q(a) = �a/2� for

a ∈ A, where the floor function takes its usual meaning for integers. It now

follows by inspection that with respect to these choices, the definition (16) of

signA matches signr as required.

We are now in a position to apply Proposition 4.8 to obtain a Gel′fand model

for the wreath product Gn = A�Sn. In particular, extend τ to an automorphism

τ ∈ Aut(Gn) by
τ
(a, π) = (a−1, π), and define a map ρn,A : Gn → GL(VGn,τ )

by

ρn,A(g)Cω = signGn(g, ω) · Cg·ω·τg−1 , for g ∈ Gn, ω ∈ IGn,τ ,
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where

signGn(g, ω) = signSn(|g|, |ω|)
∏

i∈Fix(|ω|)
signA(zg(i), zω(i)).

Here signSn is given by (4) and signA is given by either (16) or (18). The

following theorem is now immediate from Proposition 4.8 and the preceding

two results.

Theorem 5.4: The map ρn,A defines a Gel′fand model for Gn = A � Sn when

A is abelian.

By restating this theorem in slightly greater detail in the special case that

A is cyclic, we can explain the formula (1) from the introduction and provide

an alternate proof of Theorem 1.2 in [2]. For this, we view Zr as the additive

group of integers [0, r − 1], so that

(19) (a, π)(b, σ) = (σ−1(a) + b, πσ), for (a, π), (b, σ) ∈ Zr � Sn.
We let (a, π)T = (−a, π)−1 =

(
π(a), π−1

)
for (a, π) ∈ Zr � Sn and define

Vr,n = Q-span
{
Cω : ω ∈ Zr � Sn, ωT = ω

}
.

Observe that gT = τg−1 for g ∈ Zr �Sn, where τ is the automorphism
τ
(a, π) =

(−a, π). Therefore Vr,n = VG,τ with G = Zr � Sn in our earlier notation. Also,

if we view elements of the wreath product Zr � Sn as generalized permutation

matrices, then gT is the usual matrix transpose of g. An element g ∈ Zr � Sn is

symmetric or an absolute involution if gT = g.

Recall the definition of |g| and zg for g ∈ Zr � Sn from (13). The following

notation comes from Definitions 6.1 and 6.3 in [2]. Fix g, ω ∈ Zr � Sn with

ωT = ω. If r is odd, let B(g, ω) = ∅ be the empty set, and if r is even, let

B(g, ω) denote the subset of {1, . . . , n} given by

B(g, ω) =

{
i ∈ Fix(|ω|) :

zω(i) is odd and zg(i) + k ∈ [r/2, r − 1] for the

unique k ∈ [0, r/2− 1] with 2k + 1 = zω(i)

}
.

Next define

signr,n(g, ω) = (−1)|B(g,ω)| · (−1)|Inv(|g|)∩Pair(|ω|)|

and let ρr,n : Zr � Sn → GL(Vr,n) be the map given by

ρr,n(g)Cω = signr,n(g, ω) · CgωgT , for g, ω ∈ Zr � Sn with ωT = ω.
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The map ρr,n is precisely the representation ρn,A above with A = Zr and

signA = signr, and one can check that our definition of signr,n agrees with

the one given on generators in the introduction. We thus obtain the following

corollary, which appears as Theorem 1.2 in [2].

Corollary 5.5 (See Adin, Postnikov and Roichman [2]): The map ρr,n defines

a Gel′fand model for the wreath product Zr � Sn.
By directly applying Theorem 4.7 to Lemma 5.1, we can explicitly describe

the generalized involution model for Zr � Sn whose existence is implicit in our

construction of ρr,n. In this situation, it is convenient to identify Zr with the

multiplicative subgroup of C× given by all rth roots of unity; thus Z2 = {±1}.
Let ζr = e2πi/r be a primitive rth root of unity. We view Zr � Sn as the

multiplicative group of n× n generalized permutation matrices whose nonzero

entries are taken from Zr. Given g ∈ Zr � Sn, let |g| denote the permutation

matrix given by replacing each entry of g with its absolute value, and let zg(i)

for i = 1, . . . , n denote the nonzero entry of g in its ith column. Under our

previous conventions, the matrix g can then be identified with the abstract pair

(x, π) where π = |g| ∈ Sn and xi = zg(i) ∈ Zr for i = 1, . . . , n. The matrix

transpose gT then coincides with our previous definition of the transpose.

For each i ∈ [0, r − 1], let ψi : Zr → C denote the irreducible character

ψi(x) = xi, for x ∈ Zr viewed as an element of C×,

so that Irr(Zr) = {ψi : i ∈ [0, r − 1]}. Additionally let

P = the set of all partitions of nonnegative integers,

Pr(n) = the set of r-tuples θ = (θ0, θ1, . . . , θr−1) of partitions

with |θ0|+ |θ1|+ · · ·+ |θr−1| = n.

We refer to elements of Pr(n) as r-partite partitions of n. Define ψi � λ for

i ∈ [0, r − 1] and λ ∈ P as the character of Zr � S|λ| given by

(ψi � λ) (g) = χλ(|g|)
(

det(g)

det(|g|)
)i
, for g ∈ Zr � S|λ|.

One checks via Lemma 4.1 that this coincides with our constructions in Section

4.1 since Zr is abelian and since det(g)/det(|g|) is the product of the nonzero

entries of generalized permutation matrix g. Now, following Theorem 4.2, each
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irreducible character of Zr � Sn is of the form

χθ
def
= IndZr�SnSθ

( r−1⊙
i=0

ψi � θi
)
, where Sθ =

r−1∏
i=0

Zr � S|θi|,

for a unique θ ∈ Pr(n). We refer to the r-partite partition θ of n as the shape of

the irreducible character χθ. The shape of an irreducible Zr �Sn-representation
is then the shape of its character.

We recall also the following additional definitions from Section 4.1:

ωk = (1 2)(3 4) · · · (2k − 1 2k) ∈ S2k,

V τk =
{
g ∈ Zr � S2k : |g| ∈ CSn(ωk), z2i−1(g) · z2i(g) = 1 for all i

}
.

The next theorem says precisely how to construct ρr,n by inducing linear rep-

resentations. Its proof is simply an exercise in translating the notations of

Theorem 4.7 and Lemma 5.1.

Theorem 5.6: The wreath product Gn = Zr � Sn has a generalized involution

model with respect to the automorphism g �→ (g−1)T .

(i) If r is odd, then the model is given by the 1 + �n/2� linear characters

λk : CGn,τ (εk) → Q with 0 ≤ 2k ≤ n, where

εk =

(
ωk 0

0 In−2k

)

for 0 ≤ 2k ≤ n are orbit representatives in IGn,τ and

CGn,τ (εk) =

{
g =

(
ν 0

0 π

)
: ν ∈ V τk , π ∈ Sr−2k

}

and λk(g) = det(ν) for g ∈ CGn,τ (εk). If θ ∈ Pr(n) then the irre-

ducible character χθ is a constituent of IndGnCGn,τ (εk)
(λk) if and only if

the partitions θ0, θ1, . . . , θr−1 have n− 2k odd columns in total.

(ii) If r is even, then the model is given by the �n+1
2 �·�n+3

2 � linear characters
λk,� : CGn,τ (εk,�) → Q with 0 ≤ 2k + � ≤ n, where

εk,� =

⎛⎜⎝ ωk 0 0

0 In−2k−� 0

0 0 ζrI�

⎞⎟⎠
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for 0 ≤ 2k + � ≤ n are orbit representatives in IGn,τ and

CGn,τ (εk,�) =

⎧⎪⎨⎪⎩g =

⎛⎜⎝ ν 0 0

0 x 0

0 0 y

⎞⎟⎠ :

ν ∈ V τk ,

x ∈ Z2 � Sn−2k−�,
y ∈ Z2 � S�

⎫⎪⎬⎪⎭
and λk,�(g) = det(ν) det(y)/ det(|y|) for g ∈ CGn,τ (εk,�). If θ ∈ Pr(n)

then the irreducible character χθ is a constituent of IndGnCGn,τ (εk)
(λk) if

and only if the partitions θ0, θ2, . . . , θr−2 have n− 2k− � odd columns

in total and the partitions θ1, θ3, . . . , θr−1 have � odd columns in total.

Proof. Assume r is even; the case when r is odd is the same but less complicated.

Let Ir = Z2 = {±1} denote the subgroup of involutions in Zr, and define

11, χ : Ir → C to be the trivial and nontrivial characters of Ir, respectively. By
Lemma 5.2,

IndZr

Ir (11) = ψ0 + ψ2 + · · ·+ ψr−2 and IndZrIr (χ) = ψ1 + ψ3 + · · ·+ ψr−1.

As in Section 4, let U2(n) denote the set of triples of nonnegative integers

x = (x0, x1, x2) with 2x0+x1+x2 = n. For each x ∈ U2(n) define φ
τ
x : Gτx → C

by (8) and εx ∈ G as in Theorem 4.7, where we take H1 = H2 = Ir, define τ by
τg = (g−1)T , set ε1 = 0 ∈ Zr and ε2 = 1 ∈ Zr. By Theorems 4.6 and 4.7, the

linear characters {φτx : x ∈ U2(n)} form a generalized involution model for Gn,

and χθ is a constituent of IndGnGτx (φ
τ
x) if and only if the partitions θ0, θ2, . . . , θr−2

have x1 odd columns in total and the partitions θ1, θ3, . . . , θr−1 have x2 odd

columns in total. The theorem is immediate after noting that εx = εx0,x2 and

φτx = λx0,x2 in the notation of the current theorem, which follows easily from

the fact that the product of the nonzero entries of an invertible generalized

permutation matrix g is precisely det(g)/ det(|g|).
In the following corollary, let 2Zr =

〈
ζ2r
〉
, where ζr = e2πi/r generates Zr.

If r is odd then of course 2Zr = Zr, while if r is even then 2Zr = Zr/2 =

{1 = ζ0r , ζ
2
r , . . . , ζ

r−2
r }.

Corollary 5.7: Fix ω ∈ Zr � Sn such that ω = ωT . Let

k = the number of 2-cycles in |ω|,
� = the number of i ∈ Fix(|ω|) with zω(i) /∈ 2Zr.

The character of the subrepresentation of ρr,n generated by vector Cω ∈ Vr,n is

then the sum
∑

θ χθ over all θ ∈ Pr(n) such that:
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(i) When r is odd, the partitions θ0, θ1, . . . , θr−1 have n− 2k odd columns

in total.

(ii) When r is even, the partitions θ0, θ2, . . . , θr−2 have n − 2k − � odd

columns in total and the partitions θ1, θ3, . . . , θr−1 have � odd columns

in total.

Proof. This follows from the preceding theorem after checking that the orbit of

ω under the twisted conjugacy action g : ω �→ gωgT contains εk when r is odd

and εk,� when r is even.

This corollary allows us to prove Conjecture 7.1 in [2]. Recall the definition

given above of an r-partite partition of n. One obtains an r-partite standard

Young tableau of shape θ ∈ Pr(n) by inserting the integers 1, 2, . . . , n bijec-

tively into the cells of the Ferrers diagrams of the partitions θ0, θ1, . . . , θr−1 so

that entries increase along each row and column of each partition.

The natural subrepresentations considered in the preceding corollary have

the following connection with the generalized Robinson–Schensted correspon-

dence for wreath products due to Stanton and White [20]. Recall, for example

from [19], that the usual Robinson–Schensted–Knuth (RSK) correspondence is

a bijective map (
a1 a2 · · · an

b1 b2 · · · bn

)
RSK−−−→ (P,Q)

from two-line arrays of lexicographically ordered positive integers to pairs of

semistandard Young tableaux (P,Q) with the same shape. Viewing σ ∈ Sn as

the two-line array with ai = i and bi = σ(i), this map restricts to a bijection

from permutations to pairs of standard Young tableaux with the same shape.

Schützenberger proves in [17] that the RSK correspondence associates to each

involution ω ∈ ISn with f fixed points a pair of standard Young tableaux (P,Q)

with P = Q whose common shape has f odd columns.

To define Stanton and White’s colored RSK correspondence for wreath prod-

ucts, fix an element g ∈ Zr � Sn and, for each j ∈ [0, r − 1], let (Pj , Qj) be the

pair of tableaux obtained by RSK correspondence applied to the array

(20)

(
i1 i2 · · · i�

σ(i1) σ(i2) · · · σ(i�)

)
where {i1 < i2 < · · · < i�} is the set of i ∈ [1, n] with zg(i) = ζjr . The colored

RSK correspondence is then the bijection from elements of Zr � Sn to pairs of
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r-partite standard Young tableaux of the same shape defined by

g −→ (P ,Q) =

(
(P0, P1, . . . , Pr−1), (Q0, Q1, . . . , Qr−1)

)
.

To begin, we have the following easy corollary of Schützenberger’s result.

Lemma 5.8: Fix ω ∈ Zr �Sn such that ω = ωT and suppose ω �→ (P ,Q) under

the colored RSK correspondence. Then P = Q and, for each j ∈ [0, r − 1],

the number of odd columns in the shape of Pj is equal to the cardinality of{
i ∈ Fix(|ω|) : zω(i) = ζjr

}
.

Proof. Since ω is a symmetric element, we have zω(i) = zω(j) whenever i and

j are in the same cycle of the involution |ω| ∈ Sn. Therefore each array (20)

corresponds to an involution in the group of permutations of the set {i1, . . . , i�},
and it follows by Schützenberger’s result that P = Q and the number of odd

columns in the shape of Pj is as claimed.

We can now prove the theorem promised in the introduction.

Theorem 5.9: Let X be a set of symmetric elements in Zr �Sn. If the elements

of X span a ρr,n-invariant subspace of Vr,n, then the subrepresentation of ρr,n

on this space is equivalent to the multiplicity-free sum of all irreducible Zr �Sn-
representations whose shapes are obtained from the elements of X by the colored

RSK correspondence.

Remark 5.2: Caselli and Fulci prove a similar result concerning the decom-

position of a different Gel′fand model for Zr � Sn in the recent preprint [9].

Comparing the preceding theorem with [9, Theorem 1.2] shows that there exist

abstract isomorphisms between various natural subrepresentations of these two

Gel′fand models.

The symmetric elements ω ∈ Zr �Sn whose underlying permutations |ω| ∈ Sn

have a fixed number of 2-cycles form a union of twisted conjugacy classes with

respect to the inverse transpose automorphsim, and so they span an invariant

subspace of Vr,n. Hence, this result implies [2, Conjecture 7.1].

Proof. It suffices to prove the theorem when X =
{
gωgT : g ∈ Zr � Sn

}
is the

orbit of some ω ∈ Zr � Sn with ωT = ω. In this case, it follows by comparing

Corollary 5.7 and Lemma 5.8 that the colored RSK correspondence defines an

injective map from X to the set of r-partite standard Young tableaux whose
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shapes index irreducible constituents of the subrepresentation generated by X .

Since the number of such tableaux is equal to the cardinality of X due to

the well-known fact that the number of r-partite standard Young tableaux of

shape θ is equal to χθ(1), this map is in fact a bijection, which proves the

theorem.

We conclude by deriving two additional results which will be useful in the

subsequent work [15]. Assume r is even. We then have two ρr,n-invariant

subspaces of Vr,n given by

V+
r,n = Q-span

{
Cω : ω ∈ Zr � Sn, ωT = ω, det(ω)/ det(|ω|) ∈ 2Zr

}
,

V−
r,n = Q-span

{
Cω : ω ∈ Zr � Sn, ωT = ω, det(ω)/ det(|ω|) /∈ 2Zr

}
.

Let χ+
r,n and χ−

r,n denote the characters of Zr �Sn corresponding to the subrep-

resentations of ρr,n on V+
r,n and V−

r,n respectively.

Corollary 5.10: Let r, n be positive integers with r even. Given an r-partite

partition θ ∈ Pr(n), define Ω(θ) as the sum of the numbers of odd columns in

the partitions θ1, θ3, . . . , θr−1. Then

χ+
r,n =

∑
θ∈Pr(n),
Ω(θ) is even

χθ and χ−
r,n =

∑
θ∈Pr(n),
Ω(θ) is odd

χθ.

Proof. Since det(ω)/ det(|ω|) ∈ 2Zr for a symmetric element ω ∈ Zr � Sn if

and only if the union of the disjoint sets
{
i ∈ Fix(|ω|) : zω(i) = ζjr

}
over all

odd j ∈ [0, r − 1] has even cardinality, this is immediate from Lemma 5.8 and

Theorem 5.9.

Suppose p is a positive integer dividing r. Let γ : Zr � Sn → C denote the

linear character defined by

γ(g) =
(
ψr/p � (n)

)
(g) =

(
det(g)

det(|g|)
)r/p

, for g ∈ Zr � Sn.

Here (n) denotes the trivial partition of n. A straightforward calculation shows

that for all θ ∈ Pr(n) we have

(21) γ ⊗ χθ = χθ′ , where θ′i = θi−r/p for i ∈ [0, r − 1],

where with slight abuse of notation we define θi−r = θi for i ∈ [0, r − 1]. This

observation leads to the following proposition.
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Proposition 5.11: Let r, p, n be positive integers with r even and p dividing

r. Then

γ ⊗ χ+
r,n =

⎧⎨⎩χ−
r,n, if n and r/p are odd,

χ+
r,n, otherwise;

and

γ ⊗ χ−
r,n =

⎧⎨⎩χ+
r,n, if n and r/p are odd;

χ−
r,n, otherwise.

Proof. Recall the definition of Ω from Corollary 5.10 and let Ω′(θ) for θ ∈ Pr(n)

be the sum of the numbers of odd columns in the partitions θ0, θ2, . . . , θr−2.

Suppose r/p is odd; then (21) implies that the map χ �→ γ ⊗ χ exchanges the

two sets

(22) {χθ : θ ∈ Pr(n), Ω(θ) is odd} and {χθ : θ ∈ Pr(n), Ω
′(θ) is odd}.

If n is odd, then θ ∈ Pr(n) has Ω′(θ) odd if and only if Ω(θ) is even, and it

follows immediately from Corollary 5.10 that γ⊗χ±
r,n = χ∓

r,n. If n is even, then

θ ∈ Pr(n) has Ω
′(θ) odd if and only if Ω(θ) is odd, so the two sets in (22) are the

same, and necessarily γ⊗χ+
r,n = χ+

r,n. Alternatively, if r/p is even, then by (21)

the map χ �→ γ ⊗ χ defines a permutation of the set of irreducible constituents

of χ+
r,n so γ ⊗ χ+

r,n = χ+
r,n. Similar arguments show that γ ⊗ χ−

r,n = χ−
r,n if n or

r/p is even.

We continue this discussion and apply these results in the complementary

work [15], where we show how and when the Gel′fand model ρr,n can be ex-

tended to the complex reflection group G(r, p, n), and classify the finite complex

reflection groups which have generalized involution models.
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Geometrie 44 (2003), 359–373.



Vol. 192, 2012 GENERALIZED INVOLUTION MODELS 195

[5] J. O. Araujo and J. J. Bigeón, A Gel′fand model for a Weyl group of type Dn and the

branching rules D ↪→ B, Journal of Algebra 294 (2005), 97–116.

[6] R. W. Baddeley, Models and involution models for wreath products and certain Weyl

groups, Journal of the London Mathematical Society. Second Series 44 (1991), 55–74.

[7] R. W. Baddeley, Some Multiplicity-Free Characters of Finite Groups, Ph.D. Thesis,

Cambridge, 1991.

[8] D. Bump and D. Ginzburg, Generalized Frobenius–Schur numbers, Journal of Algebra

278 (2004), 294–313.

[9] F. Caselli and R. Fulci, Refined Gel′fand models for wreath products, European Journal

of Combinatorics 32 (2011), 198–216.

[10] N. F. J. Inglis, R. W. Richardson and J. Saxl, An explicit model for the complex repre-

sentations of Sn, Archiv der Mathematik 54 (1990), 258–259.

[11] N. Kawanaka and H. Matsuyama, A twisted version of the Frobenius–Schur indicator and

multiplicity-free permutation representation, Hokkaido Mathematical Journal 19 (1990),

495–508.

[12] A. A. Klyachko, Models for complex representations of the groups GL(n, q) and Weyl

groups, Doklady Akademii Nauk SSSR 261 (1981), 275–278 (in Russian).

[13] A. A. Klyachko, Models for complex representations of the groups GL(n, q), Matematich-

eskii Sbornik 120 (162) (1983), 371–386 (in Russian).

[14] V. Kodiyalam and D. N. Verma, A natural representation model for symmetric groups,

preprint, available online at arXiv:math/0402216v1 (2004).

[15] E. Marberg, Automorphisms and generalized involution models of finite complex reflec-

tion groups, Journal of Algebra 334 (2011), 295–320.

[16] P. D. Ryan, Representations of Weyl groups of type B induced from centralisers of

involutions, Bulletin of the Australian Mathematical Society 44 (1991), 337–344.

[17] M. P. Schützenberger, La correspondance de Robinson, in Combinatoire et reprèsentation

du groupe symétrique, Lecture Notes in Mathematics, Vol. 579, Springer-Verlag, New

York–Berlin, 1977, pp. 59–113.

[18] W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Schriften Mathematics

Seminar (Berlin) 1 (1932), 1–32.

[19] R. Stanley, Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced

Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.

[20] D. W. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux, Journal

of Combinatorial Theory, Series A 40 (1985), 211–247.

[21] J. R. Stembridge, On the eigenvalues of representations of reflection groups and wreath

products, Pacific Journal of Mathematics 140 (1989), 353–396.

[22] C. R. Vinroot, Involution models of finite Coxeter groups, Journal of Group Theory 11

(2008), 333–340.




