552 research outputs found

    Immunology's Coming of Age

    Get PDF
    This treatise describes the development of immunology as a scientific discipline with a focus on its foundation. Toward the end of the nineteenth century, the study of immunology was founded with the discoveries of phagocytosis by Elias Metchnikoff, as well as by Emil Behring's and Paul Ehrlich's discovery of neutralizing antibodies. These seminal studies were followed by the discoveries of bacteriolysis by complement and of opsonization by antibodies, which provided first evidence for cooperation between acquired and innate immunity. In the years that followed, light was shed on the pathogenic corollary of the immune response, describing different types of hypersensitivity. Subsequently, immunochemistry dominated the field, leading to the revelation of the chemical structure of antibodies in the 1960s. Immunobiology was preceded by transplantation biology, which laid the ground for the genetic basis of acquired immunity. With the identification of antibody producers as B lymphocytes and the discovery of T lymphocytes as regulators of acquired immunity, lymphocytes moved into the center of immunologic research. T cells were shown to be genetically restricted and to regulate different leukocyte populations, including B cells and professional phagocytes. The discovery of dendritic cells as major antigen-presenting cells and their surface expression of pattern recognition receptors revealed the mechanisms by which innate immunity instructs acquired immunity. Genetic analysis provided in-depth insights into the generation of antibody diversity by recombination, which in principle was shown to underlie diversity of the T cell receptor, as well. The invention of monoclonal antibodies not only provided ultimate proof for the unique antigen specificity of the antibody-producing plasma cell, it also paved the way for a new era of immunotherapy. Emil Behring demonstrated cure of infectious disease by serum therapy, illustrating how clinical studies can stimulate basic research. The recent discovery of checkpoint control for cancer therapy illustrates how clinical application benefits from insights into basic mechanisms. Last not least, perspectives on immunology progressed from a dichotomy between cellular-unspecific innate immunity and humoral-specific acquired immunity, toward the concept of complementary binarity

    Rapid Neutrophil Response Controls Fast-Replicating Intracellular Bacteria but Not Slow-Replicating Mycobacterium tuberculosis

    Get PDF
    Being one of the first cells to invade the site of infection, neutrophils play an important role in the control of various bacterial and viral infections. In the present work, the contribution of neutrophils to the control of infection with different intracellular bacteria was investigated. Mice were treated with the neutrophil-depleting monoclonal antibody RB6-8C5, and the time course of infection in treated and untreated mice was compared by using intracellular bacterial species and strains varying in virulence and replication rate. The results indicate that neutrophils are crucial for the control of fast-replicating intracellular bacteria, whereas early neutrophil effector mechanisms are dispensable for the control of the slow-replicating Mycobacterium tuberculosi

    Regional IFNγ expression is insufficient for efficacious control of food-borne bacterial pathogens at the gut epithelial barrier

    Get PDF
    IFNγ is critical for host defence against various food-borne pathogens including Salmonella enterica and Listeria monocytogenes, the causative agents of salmonellosis and listeriosis, respectively. We investigated the impact of regional IFNγ expression at the intestinal epithelial barrier on host invasion by salmonellae and listeriae following oral challenge. Transgenic mice (IFNγ-gut), generated on an IFNγ knock-out (KO) background, selectively expressed IFNγ in the gut driven by the modified liver fatty acid-binding protein (Fabpl4× at −132) promoter. Infections with attenuated S. enterica Typhimurium or with L. monocytogenes did not differ significantly in IFNγ-KO, IFNγ-gut and wild-type mice. Further, Listeria-specific CD4+ and CD8+ T cells were not altered in IFNγ-gut mice. Thus, this model indicates that local IFNγ expression by non-immunological cells in the distal part of the small intestine, caecum and colon is insufficient for prevention of gut penetration by S. enterica Typhimurium and L. monocytogene

    requirements for naive CD4+ T cell stimulation

    Get PDF
    Human primary dendritic cells (DCs) are heterogeneous by phenotype, function, and tissue localization and distinct from inflammatory monocyte-derived DCs. Current information regarding the susceptibility and functional role of primary human DC subsets to Mycobacterium tuberculosis (Mtb) infection is limited. Here, we dissect the response of different primary DC subsets to Mtb infection. Myeloid CD11c+ cells and pDCs (C-type lectin 4C+ cells) were located in human lymph nodes (LNs) of tuberculosis (TB) patients by histochemistry. Rare CD141hi DCs (C-type lectin 9A+ cells) were also identified. Infection with live Mtb revealed a higher responsiveness of myeloid CD1c+ DCs compared to CD141hi DCs and pDCs. CD1c+ DCs produced interleukin (IL)-6, tumor necrosis factor α, and IL-1β but not IL-12p70, a cytokine important for Th1 activation and host defenses against Mtb. Yet, CD1c+ DCs were able to activate autologous naïve CD4+ T cells. By combining cell purification with fluorescence-activated cell sorting and gene expression profiling on rare cell populations, we detected in responding CD4+ T cells, genes related to effector-cytolytic functions and transcription factors associated with Th1, Th17, and Treg polarization, suggesting multifunctional properties in our experimental conditions. Finally, immunohistologic analyses revealed contact between CD11c+ cells and pDCs in LNs of TB patients and in vitro data suggest that cooperation between Mtb-infected CD1c+ DCs and pDCs favors stimulation of CD4+ T cells

    The Proteasome System in Infection: Impact of β5 and LMP7 on Composition, Maturation and Quantity of Active Proteasome Complexes

    Get PDF
    Proteasomes are the major enzyme complexes for non-lysosomal protein degradation in eukaryotic cells. Mammals express two sets of catalytic subunits: the constitutive subunits β1, β2 and β5 and the immunosubunits LMP2 (β1i), MECL-1 (β2i) and LMP7 (β5i). The LMP7-propeptide (proLMP7) is required for optimal maturation of LMP2/MECL-1-containing precursors to mature immunoproteasomes, but can also mediate efficient integration into mixed proteasomes containing β1 and β2. In contrast, the β5-propeptide (proβ5) has been suggested to promote preferential integration into β1/β2-containing precursors, consequently favouring the formation of constitutive proteasomes. Here, we show that proβ5 predominantly promotes integration into LMP2/MECL-1-containing precursors in IFNγ-stimulated, LMP7-deficient cells and infected LMP7-deficient mice. This demonstrates that proβ5 does not direct preferential integration into β1/β2-containing precursors, but instead promotes the formation of mixed LMP2/MECL-1/β5 proteasomes under inflammatory conditions. Moreover, the propeptides substantially differ in their capacity to promote proteasome maturation, with proLMP7 showing a significantly higher chaperone activity as compared to proβ5. Increased efficiency of proteasome maturation mediated by proLMP7 is required for optimal MHC class I cell surface expression and is equally important as the catalytic activity of immunoproteasomes. Intriguingly, induction of LMP7 by infection not only results in rapid exchange of constitutive by immunosubunits, as previously suggested, but also increases the total proteasome abundance within the infected tissue. Hence our data identify a novel LMP7-dependend mechanism to enhance the activity of the proteasome system in infection, which is based on the high chaperone activity of proLMP7 and relies on accelerated maturation of active proteasome complexes

    Developmental transcriptome of resting cell formation in Mycobacterium smegmatis

    Get PDF
    Functional classification of gene numbers up- and down-regulated during shock starvation in PBS. (PDF 1796 kb

    Granulysin-Expressing CD4+ T Cells as Candidate Immune Marker for Tuberculosis during Childhood and Adolescence

    Get PDF
    BACKGROUND: Granulysin produced by cytolytic T cells directly contributes to immune defense against tuberculosis (TB). We investigated granulysin as a candidate immune marker for childhood and adolescent TB. METHODS: Peripheral blood mononuclear cells (PBMC) from children and adolescents (1-17 years) with active TB, latent TB infection (LTBI), nontuberculous mycobacteria (NTM) infection and from uninfected controls were isolated and restimulated in a 7-day restimulation assay. Intracellular staining was then performed to analyze antigen-specific induction of activation markers and cytotoxic proteins, notably, granulysin in CD4(+) CD45RO(+) memory T cells. RESULTS: CD4(+) CD45RO(+) T cells co-expressing granulysin with specificity for Mycobacterium tuberculosis (Mtb) were present in high frequency in TB-experienced children and adolescents. Proliferating memory T cells (CFSE(low)CD4(+)CD45RO(+)) were identified as main source of granulysin and these cells expressed both central and effector memory phenotype. PBMC from study participants after TB drug therapy revealed that granulysin-expressing CD4(+) T cells are long-lived, and express several activation and cytotoxicity markers with a proportion of cells being interferon-gamma-positive. In addition, granulysin-expressing T cell lines showed cytolytic activity against Mtb-infected target cells. CONCLUSIONS: Our data suggest granulysin expression by CD4(+) memory T cells as candidate immune marker for TB infection, notably, in childhood and adolescence

    Mycobacterium tuberculosis Invasion of the Human Lung: First Contact

    Get PDF
    Early immune responses to Mycobacterium tuberculosis (Mtb) invasion of the human lung play a decisive role in the outcome of infection, leading to either rapid clearance of the pathogen or stable infection. Despite their critical impact on health and disease, these early host–pathogen interactions at the primary site of infection are still poorly understood. In vitro studies cannot fully reflect the complexity of the lung architecture and its impact on host–pathogen interactions, while animal models have their own limitations. In this study, we have investigated the initial responses in human lung tissue explants to Mtb infection, focusing primarily on gene expression patterns in different tissue-resident cell types. As first cell types confronted with pathogens invading the lung, alveolar macrophages, and epithelial cells displayed rapid proinflammatory chemokine and cytokine responses to Mtb infection. Other tissue-resident innate cells like gamma/delta T cells, mucosal associated invariant T cells, and natural killer cells showed partially similar but weaker responses, with a high degree of variability across different donors. Finally, we investigated the responses of tissue-resident innate lymphoid cells to the inflammatory milieu induced by Mtb infection. Our infection model provides a unique approach toward host–pathogen interactions at the natural port of Mtb entry and site of its implantation, i.e., the human lung. Our data provide a first detailed insight into the early responses of different relevant pulmonary cells in the alveolar microenvironment to contact with Mtb. These results can form the basis for the identification of host markers that orchestrate early host defense and provide resistance or susceptibility to stable Mtb infection

    Identifying Activated T Cells in Reconstituted RAG Deficient Mice Using Retrovirally Transduced Pax5 Deficient Pro-B Cells

    Get PDF
    Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP) and a far-red fluorescent protein from Heteractis crispa (HcRed). LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L) promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deifcient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells

    Lawan penyakit demi PhD

    Get PDF
    Kuantan - Semangat yang tinggi untuk menamatkan pengajian di peringkat Doktor Falsafah (PhD) membuatkan pensyarah Bahasa Inggeris Universiti Tenaga Nasional (Uniten) Muadzam Shah, Dr. Umi Kalsom Masrom, 37, tabah melawan penyakit 'adhesion colic' yang dihidapinya dua tahun lalu
    • …
    corecore