136 research outputs found

    AMANDA : an autonomous self-powered miniaturized smart sensing embedded system

    Get PDF
    ​© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper introduces an Autonomous Smart Sensing Card (ASSC), an embedded system that will be powered indoors and outdoors by harvested energy, have miniaturized dimensions and serve multi-sensorial IoT applications for smart living and working environments. It will consist of a combination of newly developed and optimized off-the-shelf or close-tocommercialization technologies such as PV harvesters, energy storage and power management units, MCUs and sensors, all packed with a form factor under 3mm in thickness. The system will introduce technical breakthroughs that will boost further miniaturization, a small footprint, ultra-low power consumption as well as short- and long-range communications

    Combined Metabolic Targeting With Metformin and the NSAIDs Diflunisal and Diclofenac Induces Apoptosis in Acute Myeloid Leukemia Cells

    Get PDF
    The accelerated metabolism of tumor cells, inevitable for maintaining high proliferation rates, is an emerging target for tumor therapy. Increased glucose and lipid metabolism as well as mitochondrial activity have been shown in solid tumors but also in leukemic cells. As tumor cells are able to escape the blockade of one metabolic pathway by a compensatory increase in other pathways, treatment strategies simultaneously targeting metabolism at different sites are currently developed. However, the number of clinically applicable anti-metabolic drugs is still limited. Here, we analyzed the impact of the anti-diabetic drug metformin alone or in combination with two non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac and diflunisal on acute myeloid leukemia (AML) cell lines and primary patient blasts. Diclofenac but not diflunisal reduced lactate secretion in different AML cell lines (THP-1, U937, and KG-1) and both drugs increased respiration at low concentrations. Despite these metabolic effects, both NSAIDs showed a limited effect on tumor cell proliferation and viability up to a concentration of 0.2 mM. In higher concentrations of 0.4–0.8 mM diflunisal alone exerted a clear effect on proliferation of AML cell lines and blocked respiration. Single treatment with the anti-diabetic drug metformin blocked mitochondrial respiration, but proliferation and viability were not affected. However, combining all three drugs exerted a strong cytostatic and cytotoxic effect on THP-1 cells. Comparable to the results obtained with THP-1 cells, the combination of all three drugs significantly reduced proliferation of primary leukemic blasts and induced apoptosis. Furthermore, NSAIDs supported the effect of low dose chemotherapy with cytarabine and reduced proliferation of primary AML blasts. Taken together we show that low concentrations of metformin and the two NSAIDs diclofenac and diflunisal exert a synergistic inhibitory effect on AML proliferation and induce apoptosis most likely by blocking tumor cell metabolism. Our results underline the feasibility of applying anti-metabolic drugs for AML therapy

    Local staging of rectal cancer: the current role of MRI

    Get PDF
    With the advent of powerful gradient coil systems and high-resolution surface coils, magnetic resonance imaging (MRI) has recently extended its role in the staging of rectal cancer. MRI is superior to endorectal ultrasound, the most widely used staging modality in patients with rectal tumors, in that it visualizes not only the intestinal wall but also the surrounding pelvic anatomy. The crucial advantage of MRI is not that it enables exact T-staging but precise evaluation of the topographic relationship of a tumor to the mesorectal fascia. This fascia is the most important anatomic landmark for the feasibility of total mesorectal excision, which has evolved into the standard operative procedure for the resection of cancer located in the middle or lower third of the rectum. MRI is currently the only imaging modality that is highly accurate in predicting whether or not it is likely that a tumor-free margin can be achieved and thus provides important information for planning of an effective therapeutic strategy, especially in patients with advanced rectal cancer

    Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy

    Get PDF
    Tumor-derived lactic acid inhibits T and natural killer (NK) cell function and, thereby, tumor immunosurveillance. Here, we report that melanoma patients with high expression of glycolysis-related genes show a worse progression free survival upon anti-PD1 treatment. The non-steroidal anti-inflammatory drug (NSAID) diclofenac lowers lactate secretion of tumor cells and improves anti-PD1-induced T cell killing in vitro. Surprisingly, diclofenac, but not other NSAIDs, turns out to be a potent inhibitor of the lactate transporters monocarboxylate transporter 1 and 4 and diminishes lactate efflux. Notably, T cell activation, viability, and effector functions are preserved under diclofenac treatment and in a low glucose environment in vitro. Diclofenac, but not aspirin, delays tumor growth and improves the efficacy of checkpoint therapy in vivo. Moreover, genetic suppression of glycolysis in tumor cells strongly improves checkpoint therapy. These findings support the rationale for targeting glycolysis in patients with high glycolytic tumors together with checkpoint inhibitors in clinical trials

    Studies of a muon-based mass sensitive parameter for the IceTop surface array

    Get PDF

    Measuring the Neutrino Cross Section Using 8 years of Upgoing Muon Neutrinos Observed with IceCube

    Get PDF
    The IceCube Neutrino Observatory detects neutrinos at energies orders of magnitude higher than those available to current accelerators. Above 40 TeV, neutrinos traveling through the Earth will be absorbed as they interact via charged current interactions with nuclei, creating a deficit of Earth-crossing neutrinos detected at IceCube. The previous published results showed the cross section to be consistent with Standard Model predictions for 1 year of IceCube data. We present a new analysis that uses 8 years of IceCube data to fit the νμ_{μ} absorption in the Earth, with statistics an order of magnitude better than previous analyses, and with an improved treatment of systematic uncertainties. It will measure the cross section in three energy bins that span the range 1 TeV to 100 PeV. We will present Monte Carlo studies that demonstrate its sensitivity

    A time-independent search for neutrinos from galaxy clusters with IceCube

    Get PDF
    • …
    corecore