36 research outputs found

    Evidence of contamination by oil and oil products in the Santos-Sao Vicente estuary, Sao Paulo, Brazil

    Get PDF
    Different components of the mixed function oxidase (MFO) system and the levels of fluorescent aromatic compounds in bile (FACs) were measured in Cathorops spixii in order to assess the impact of polycyclic aromatic hydrocarbons (PAHs). Fish were sampled in an estuary (Santos/Sao Vicente) with a history of contamination by PAHs, mainly due to the presence of the industrial complex of Cubatao city and of another of low anthropogenic influence (Cananeia) on the Brazilian coast. FACs were higher in fish from the polluted site, and the PAH 5 and 6-ring metabolites were the most frequent - with 14% and 15%, respectively. Levels of the different components of the MFO system showed the same variation profile as the FACs for both estuaries. Therefore, the values found for somatic indexes and biomarkers with data of bile PAH metabolites indicate the presence of organic contaminants, especially in the area subject to the influence of the industrial complex on the Santos/Sao Vicente estuary.CAPES (Brazilian Agency for Science and Technology); Oceanographic Institute of Sao Paulo University; Laboratory of Ecotoxicology and Environmental Chemistry of the University of Algarve; CAPES-PDEE [BEX 2176/07-6]info:eu-repo/semantics/publishedVersio

    Immunotoxicity of polystyrene nanoplastics in different hemocyte subpopulations of Mytilus galloprovincialis

    Get PDF
    Plastic represents 60-80% of litter in the ocean. Degradation of plastic to small fragments leads to the formation of microplastics (MPs <5mm) and nanoplastics (NPs <1 mu m). One of the most widely used and representative plastics found in the ocean is polystyrene (PS). Among marine organisms, the immune system of bivalves is recognized as suitable to assess nanomaterial toxicity. Hemocyte subpopulations [R1 (large granular cells), R2 (small semi-granular cells) and R3 (small agranular or hyaline cells)] of Mytilus galloprovincialis are specialized in particular tasks and functions. The authors propose to examine the effects of different sizes (50 nm, 100 nm and 1 mu m) PS NPs on the different immune cells of mussels when they were exposed to (1 and 10mg.L-1) of PS NPs. The most noteworthy results found in this work are: (i) 1 mu m PS NPs provoked higher immunological responses with respect to 50 and 100nm PS NPs, possibly related to the higher stability in size and shape in hemolymph serum, (ii) the R1 subpopulation was the most affected with respect to R2 and R3 concerning immunological responses and (iii) an increase in the release of toxic radicals, apoptotic signals, tracking of lysosomes and a decrease in phagocytic activity was found in R1

    Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives

    Get PDF
    In the past two decades, increased production and usage of metallic nanoparticles (NPs) has inevitably increased their discharge into the different compartments of the environment, which ultimately paved the way for their uptake and accumulation in various trophic levels of the food chain. Due to these issues, several questions have been raised on the usage of NPs in everyday life and has become a matter of public health concern. Among the metallic NPs, Cu-based NPs have gained popularity due to their cost-effectiveness and multifarious promising uses. Several studies in the past represented the phytotoxicity of Cu-based NPs on plants. However, comprehensive knowledge is still lacking. Additionally, the impact of Cu-based NPs on soil organisms such as agriculturally important microbes, fungi, mycorrhiza, nematode, and earthworms are poorly studied. This review article critically analyses the literature data to achieve a more comprehensive knowledge on the toxicological profile of Cu-based NPs and increase our understanding of the effects of Cu-based NPs on aquatic and terrestrial plants as well as on soil microbial communities. The underlying mechanism of biotransformation of Cu-based NPs and the process of their penetration into plants has also been discussed herein. Overall, this review could provide valuable information to design rules and regulations for the safe disposal of Cu-based NPs into a sustainable environment

    Immortalisation of primary human alveolar epithelial cells using a non-viral vector to study respiratory bioreactivity in vitro

    No full text
    To overcome the scarcity of primary human alveolar epithelial cells for lung research, and the limitations of current cell lines to recapitulate the phenotype, functional and molecular characteristics of the healthy human alveolar epithelium, we have developed a new method to immortalise primary human alveolar epithelial lung cells using a non-viral vector to transfect the telomerase catalytic subunit (hTERT) and the simian virus 40 large-tumour antigen (SV40). Twelve strains of immortalised cells (ICs) were generated and characterised using molecular, immunochemical and morphological techniques. Cell proliferation and sensitivity to polystyrene nanoparticles (PS) were evaluated. ICs expressed caveolin-1, podoplanin and receptor for advanced glycation end-products (RAGE), and most cells were negative for alkaline phosphatase staining, indicating characteristics of AT1-like cells. However, most strains also contained some cells that expressed pro-surfactant protein C, classically described to be expressed only by AT2 cells. Thus, the ICs mimic the cellular heterogeneity in the human alveolar epithelium. These ICs can be passaged, replicate rapidly and remain confluent beyond 15 days. ICs showed differential sensitivity to positive and negatively charged PS nanoparticles, illustrating their potential value as an in vitro model to study respiratory bioreactivity. These novel ICs offer a unique resource to study human alveolar epithelial biology

    Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells

    No full text
    There is a need to assess human and ecosystem health effects of copper oxide nanoparticles (CuO NPs), extensively used in many industrial products. Here, we aimed to determine the cytotoxicity and cellular mechanisms involved in the toxicity of CuO NPs in mussel cells (hemocytes and gill cells) in parallel with exposures to ionic Cu and bulk CuO, and to compare the sensitivity of mussel primary cells with a well-established human cell line (pulmonary TT1 cells). At similar doses, CuO NPs promoted dose-dependent cytotoxicity and increased reactive oxygen species (ROS) production in mussel and human cells. In mussel cells, ionic Cu was more toxic than CuO NPs and the latter more than bulk CuO. Ionic Cu and CuO NPs increased catalase and acid phosphatase activities in both mussel cells and decreased gill cells Na-K-ATPase activity. All Cu forms produced DNA damage in hemocytes, whereas in gill cells only ionic Cu and CuO NPs were genotoxic. Induction of the MXR transport activity was found in gill cells exposed to all forms of Cu and in hemocytes exposed to ionic Cu and CuO NPs. Phagocytosis increased only in hemocytes exposed to CuO NPs, indicating a nanoparticle-specific immunostimulatory effect. In conclusion, toxicity of CuO NPs is driven by ROS in human and mussel cells. Mussel cells respond to CuO NP exposure by triggering an array of defensive mechanisms
    corecore