507 research outputs found

    Comparison between measured turbine stage performance and the predicted performance using quasi-3D flow and boundary layer analyses

    Get PDF
    A method for calculating turbine stage performance is described. The usefulness of the method is demonstrated by comparing measured and predicted efficiencies for nine different stages. Comparisons are made over a range of turbine pressure ratios and rotor speeds. A quasi-3D flow analysis is used to account for complex passage geometries. Boundary layer analyses are done to account for losses due to friction. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses

    Shoot Meristem Function and Leaf Polarity: The Role of Class III HD–ZIP Genes

    Get PDF
    The shoot apical meristem comprises an organized cluster of cells with a central region population of self-maintaining stem cells providing peripheral region cells that are recruited to form differentiated lateral organs. Leaves, the principal lateral organ of the shoot, develop as polar structures typically with distinct dorsoventrality. Interdependent interactions between the meristem and developing leaf provide essential cues that serve both to maintain the meristem and to pattern dorsoventrality in the initiating leaf. A key component of both processes are the class III HD–ZIP genes. Current findings are defining the developmental role of members of this family and are identifying multiple mechanisms controlling expression of these genes

    Population Bottlenecks as a Potential Major Shaping Force of Human Genome Architecture

    Get PDF
    The modern synthetic view of human evolution proposes that the fixation of novel mutations is driven by the balance among selective advantage, selective disadvantage, and genetic drift. When considering the global architecture of the human genome, the same model can be applied to understanding the rapid acquisition and proliferation of exogenous DNA. To explore the evolutionary forces that might have morphed human genome architecture, we investigated the origin, composition, and functional potential of numts (nuclear mitochondrial pseudogenes), partial copies of the mitochondrial genome found abundantly in chromosomal DNA. Our data indicate that these elements are unlikely to be advantageous, since they possess no gross positional, transcriptional, or translational features that might indicate beneficial functionality subsequent to integration. Using sequence analysis and fossil dating, we also show a probable burst of integration of numts in the primate lineage that centers on the prosimian–anthropoid split, mimics closely the temporal distribution of Alu and processed pseudogene acquisition, and coincides with the major climatic change at the Paleocene–Eocene boundary. We therefore propose a model according to which the gross architecture and repeat distribution of the human genome can be largely accounted for by a population bottleneck early in the anthropoid lineage and subsequent effectively neutral fixation of repetitive DNA, rather than positive selection or unusual insertion pressures

    Mutations in LRRC50 Predispose Zebrafish and Humans to Seminomas

    Get PDF
    Seminoma is a subclass of human testicular germ cell tumors (TGCT), the most frequently observed cancer in young men with a rising incidence. Here we describe the identification of a novel gene predisposing specifically to seminoma formation in a vertebrate model organism. Zebrafish carrying a heterozygous nonsense mutation in Leucine-Rich Repeat Containing protein 50 (lrrc50 also called dnaaf1), associated previously with ciliary function, are found to be highly susceptible to the formation of seminomas. Genotyping of these zebrafish tumors shows loss of heterozygosity (LOH) of the wild-type lrrc50 allele in 44.4% of tumor samples, correlating with tumor progression. In humans we identified heterozygous germline LRRC50 mutations in two different pedigrees with a family history of seminomas, resulting in a nonsense Arg488* change and a missense Thr590Met change, which show reduced expression of the wild-type allele in seminomas. Zebrafish in vivo complementation studies indicate the Thr590Met to be a loss-of-function mutation. Moreover, we show that a pathogenic Gln307Glu change is significantly enriched in individuals with seminoma tumors (13% of our cohort). Together, our study introduces an animal model for seminoma and suggests LRRC50 to be a novel tumor suppressor implicated in human seminoma pathogenesis

    CHD8 Regulates Neurodevelopmental Pathways Associated with Autism Spectrum Disorder in Neural Progenitors

    Get PDF
    Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10[superscript −8]) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10[superscript −10]). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.Simons FoundationNancy Lurie Marks Family FoundationNational Institutes of Health (U.S.) (Grant MH095867)National Institutes of Health (U.S.) (Grant MH095088)National Institutes of Health (U.S.) (Grant GM061354)March of Dimes Birth Defects FoundationCharles H. Hood FoundationBrain & Behavior Research FoundationAutism Genetic Resource ExchangeAutism Speaks (Organization)Pitt–Hopkins Research Foundatio

    Discovery and Functional Annotation of SIX6 Variants in Primary Open-Angle Glaucoma

    Get PDF
    Glaucoma is a leading cause of blindness worldwide. Primary open-angle glaucoma (POAG) is the most common subtype and is a complex trait with multigenic inheritance. Genome-wide association studies have previously identified a significant association between POAG and the SIX6 locus (rs10483727, odds ratio (OR) = 1.32, p = 3.87×10−11). SIX6 plays a role in ocular development and has been associated with the morphology of the optic nerve. We sequenced the SIX6 coding and regulatory regions in 262 POAG cases and 256 controls and identified six nonsynonymous coding variants, including five rare and one common variant, Asn141His (rs33912345), which was associated significantly with POAG (OR = 1.27, p = 4.2×10−10) in the NEIGHBOR/GLAUGEN datasets. These variants were tested in an in vivo Danio rerio (zebrafish) complementation assay to evaluate ocular metrics such as eye size and optic nerve structure. Five variants, found primarily in POAG cases, were hypomorphic or null, while the sixth variant, found only in controls, was benign. One variant in the SIX6 enhancer increased expression of SIX6 and disrupted its regulation. Finally, to our knowledge for the first time, we have identified a clinical feature in POAG patients that appears to be dependent upon SIX6 genotype: patients who are homozygous for the SIX6 risk allele (His141) have a statistically thinner retinal nerve fiber layer than patients homozygous for the SIX6 non-risk allele (Asn141). Our results, in combination with previous SIX6 work, lead us to hypothesize that SIX6 risk variants disrupt the development of the neural retina, leading to a reduced number of retinal ganglion cells, thereby increasing the risk of glaucoma-associated vision loss

    The Hubble Deep Field: Observations, Data Reduction, and Galaxy Photometry

    Get PDF
    The Hubble Deep Field (HDF) is a Director's Discretionary program on HST in Cycle 5 to image an undistinguished field at high Galactic latitude in four passbands as deeply as reasonably possible. These images provide the most detailed view to date of distant field galaxies and are likely to be important for a wide range of studies in galaxy evolution and cosmology. In order to optimize observing in the time available, a field in the northern continuous viewing zone was selected and images were taken for ten consecutive days, or approximately 150 orbits. Shorter 1-2 orbit images were obtained of the fields immediately adjacent to the primary HDF in order to facilitate spectroscopic follow-up by ground-based telescopes. The observations were made from 18 to 30 December 1995, and both raw and reduced data have been put in the public domain as a community service. We present a summary of the criteria for selecting the field, the rationale behind the filter selection and observing times in each band, and the strategies for planning the observations to maximize the exposure time while avoiding earth-scattered light. Data reduction procedures are outlined, and images of the combined frames in each band are presented. Objects detected in these images are listed in a catalog with their basic photometric parameters.Comment: 37 pages, XX PostScript figures, uses aaspp4.sty astrobib.sty. (Astrobib is available from http://www.stsci.edu/software/TeX.html .) To appear the Astronomical Journal. More info on the Hubble deep field can be found at http://www.stsci.edu/../ftp/observer/hdf/hdf.html . More figures (images) can be found at http://www.stsci.edu/../ftp/observer/hdf/references/williams/ and the full source catalog is available at http://www.stsci.edu/../ftp/observer/hdf/archive/v2catalog

    Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights

    Get PDF
    Genome-wide association studies (GWAS) have identified over 100 risk loci for schizophrenia, but the causal mechanisms remain largely unknown. We performed a transcriptome-wide association study (TWAS) integrating a schizophrenia GWAS of 79,845 individuals from the Psychiatric Genomics Consortium with expression data from brain, blood, and adipose tissues across 3,693 primarily control individuals. We identified 157 TWAS-significant genes, of which 35 did not overlap a known GWAS locus. Of these 157 genes, 42 were associated with specific chromatin features measured in independent samples, thus highlighting potential regulatory targets for follow-up. Suppression of one identified susceptibility gene, mapk3, in zebrafish showed a significant effect on neurodevelopmental phenotypes. Expression and splicing from the brain captured most of the TWAS effect across all genes. This large-scale connection of associations to target genes, tissues, and regulatory features is an essential step in moving toward a mechanistic understanding of GWAS

    Hemoglobin E syndromes in Pakistani population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemoglobin E is an important hemoglobin variant with a worldwide distribution. A number of hemoglobinopathies have been reported from Pakistan. However a comprehensive description of hemoglobin E syndromes for the country was never made. This study aimed to describe various hemoglobin E disorders based on hematological parameters and chromatography. The sub-aim was to characterize hemoglobin E at molecular level.</p> <p>Methods</p> <p>This was a hospital based study conducted prospectively for a period of one year extending from January 1 to December 31, 2008. EDTA blood samples were analyzed for completed blood counts and hemoglobin variants through automated hematology analyzer and Bio-Rad beta thalassaemia short program respectively. Six samples were randomly selected to characterize HbE at molecular level through RFLP-PCR utilizing <it>Mnl</it>I restriction enzyme.</p> <p>Results</p> <p>During the study period, 11403 chromatograms were analyzed and Hb E was detected in 41 (or 0.36%) samples. Different hemoglobin E syndromes identified were HbEA (n = 20 or 49%), HbE/β-thalassemia (n = 14 or 34%), HbEE (n = 6 or 15%) and HbE/HbS (n = 1 or 2%). Compound heterozygosity for HbE and beta thalassaemia was found to be the most severely affected phenotype. RFLP-PCR utilizing <it>Mnl</it>I successfully characterized HbE at molecular level in six randomly selected samples.</p> <p>Conclusions</p> <p>Various HbE phenotypes are prevalent in Pakistan with HbEA and HbE/β thalassaemia representing the most common syndromes. Chromatography cannot only successfully identify hemoglobin E but also assist in further characterization into its phenotype including compound heterozygosity. Definitive diagnosis of HbE can easily be achieved through RFLP-PCR.</p

    Biallelic SQSTM1 mutations in early-onset, variably progressive neurodegeneration.

    Get PDF
    OBJECTIVE: To characterize clinically and molecularly an early-onset, variably progressive neurodegenerative disorder characterized by a cerebellar syndrome with severe ataxia, gaze palsy, dyskinesia, dystonia, and cognitive decline affecting 11 individuals from 3 consanguineous families. METHODS: We used whole-exome sequencing (WES) (families 1 and 2) and a combined approach based on homozygosity mapping and WES (family 3). We performed in vitro studies to explore the effect of the nontruncating SQSTM1 mutation on protein function and the effect of impaired SQSTM1 function on autophagy. We analyzed the consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in vivo using zebrafish as a model. RESULTS: We identified 3 homozygous inactivating variants, including a splice site substitution (c.301+2T>A) causing aberrant transcript processing and accelerated degradation of a resulting protein lacking exon 2, as well as 2 truncating changes (c.875_876insT and c.934_936delinsTGA). We show that loss of SQSTM1 causes impaired production of ubiquitin-positive protein aggregates in response to misfolded protein stress and decelerated autophagic flux. The consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in zebrafish documented a variable but reproducible phenotype characterized by cerebellum anomalies ranging from depletion of axonal connections to complete atrophy. We provide a detailed clinical characterization of the disorder; the natural history is reported for 2 siblings who have been followed up for >20 years. CONCLUSIONS: This study offers an accurate clinical characterization of this recently recognized neurodegenerative disorder caused by biallelic inactivating mutations in SQSTM1 and links this phenotype to defective selective autophagy
    corecore