60 research outputs found

    The United Chemicals of Cannabis: Beneficial Effects of Cannabis Phytochemicals on the Brain and Cognition

    Get PDF
    ‘Medicinal cannabis’ can be defined as pharmaceutical grade cannabis-based products used for the treatment of illness. Beneficial treatment effects of cannabidiol (CBD), a major non-intoxicating compound isolated from the cannabis plant, have been shown in multiple states of cognitive impairment, including neurodegenerative (Alzheimer’s, Huntington’s and Parkinson’s disease), neuroinflammatory (sepsis-induced encephalopathy) and neurological disorders (ischemic brain injury). CBD can also treat some of the symptoms of schizophrenia, including cognitive deficits (impairments in learning and memory), which is a major symptom domain of the illness that is largely resistant to existing antipsychotic medications. However, empirical evidence suggests the presence of an ‘entourage effect’ in cannabis; that is, observations that medicinal cannabis seems to work better in some instances when administered as a whole-plant extract. While scientific evidence highlights isolated CBD as a strong candidate for treating cognitive impairment, the entourage effect suggests that the co-operation of other plant molecules could provide further benefits. This chapter explores the scientific evidence surrounding the benefits of CBD and other specific key phytochemicals in cannabis: linalool, α-pinene, β-caryophyllene, flavonoids and anthocyanin, on brain health and cognition

    Effect of cannabidiol on cognition in a maternal immune activation (poly IC) model of schizophrenia

    Get PDF
    Abstract of a poster presentation

    Alterations to Melanocortinergic, GABAergic and Cannabinoid Neurotransmission Associated with Olanzapine-Induced Weight Gain

    Get PDF
    Background/Aim: Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/ metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapineinduced obesity. Methodology/Results: Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase (GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [ 3 H]SR-141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (36/day, 14-days). Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. Conclusions: Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly b

    Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.

    Get PDF
    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists

    A method of providing engaging formative feedback to large cohort first-year physiology and anatomy students

    Get PDF
    A growing body of evidence demonstrates a critical role for effective, meaningful feedback to enhance student learning. Effective feedback can become part of the learning cycle that is not only a learning opportunity for the student but can also be used to inform the teacher and ongoing curriculum development. Feedback is considered particularly important during the first year of university and can even be viewed as a retention strategy that can help attenuate student performance anxieties and solidify perceptions of academic support. Unfortunately, the provision of individualized, timely feedback can be particularly challenging in first-year courses as they tend to be large and diverse cohort classes that pose challenges of time and logistics. Various forms of generic feedback can provide rapid and cost-effect feedback to large cohorts but may be of limited benefit to students other than signaling weaknesses in knowledge. The present study describes a method that was used to provide formative task-related feedback to a large cohort of first-year physiology and anatomy students. Based on student evaluations presented in this study, this method provided feedback in a manner that engaged students, uncovered underlying misconceptions, facilitated peer discussion, and provided opportunity for new instruction while allowing the lecturer to recognize common gaps in knowledge and inform ongoing curriculum development

    A systematic review of the effect of cannabidiol on cognitive function: relevance to schizophrenia

    Get PDF
    Background and objectives Cognitive impairment is a core symptom domain of schizophrenia, neurological disorders and substance abuse. It is characterised by deficits in learning, memory, attention and executive functioning and can severely impact daily living. Antipsychotic drugs prescribed to treat schizophrenia provide limited cognitive benefits and novel therapeutic targets are required. Cannabidiol (CBD), a component of the cannabis plant, has anti-inflammatory and antipsychotic-like properties; however, its ability to improve cognitive impairment has not been thoroughly explored. The aim of this systematic review was to evaluate preclinical and clinical literature on the effects of CBD in cognitive domains relevant to schizophrenia. Methods A systematic literature search was performed across numerous electronic databases for English language articles (January 1990-March 2016), with 27 articles (18 preclinical and 9 clinical studies) included in the present review. Results CBD improves cognition in multiple preclinical models of cognitive impairment, including models of neuropsychiatric (schizophrenia), neurodegenerative (Alzheimer\u27s disease), neuro-inflammatory (meningitis, sepsis and cerebral malaria) and neurological disorders (hepatic encephalopathy and brain ischemia). To date, there is one clinical investigation into the effects of CBD on cognition in schizophrenia patients, with negative results for the Stroop test. CBD attenuates Δ9-THC-induced cognitive deficits. Conclusions The efficacy of CBD to improve cognition in schizophrenia cannot be elucidated due to lack of clinical evidence; however, given the ability of CBD to restore cognition in multiple studies of impairment, further investigation into its efficacy in schizophrenia is warranted. Potential mechanisms underlying the efficacy of CBD to improve cognition are discussed

    The effects of maternal antidepressant use on offspring behaviour and brain development: Implications for risk of neurodevelopmental disorders

    Get PDF
    Approximately 10% of pregnant women are prescribed antidepressant drugs (ADDs), with selective serotonin reuptake inhibitors (SSRIs) the most widely prescribed. SSRIs bind to the serotonin transporter (SERT), blocking the reabsorption of serotonin by the presynaptic neuron and increasing serotonin levels in the synaptic cleft. The serotonergic system regulates a range of brain development processes including neuronal proliferation, migration, differentiation and synaptogenesis. Given the presence of SERT in early brain development, coupled with the ability of SSRIs to cross the placenta and also enter breast milk, concerns have been raised regarding the effects of SSRI exposure on the developing foetus and newborns. In this review, we evaluate preclinical and clinical studies that have examined the effects of maternal SSRI exposure and the risk for altered neurodevelopment and associated behaviours in offspring. While the current body of evidence suggests that maternal SSRI treatment may cause perturbations to the neurobiology, behaviour and ultimately risk for neurodevelopmental disorders in exposed offspring, conflicting findings do exist and the evidence is not conclusive. However, given the increasing incidence of depression and number of women prescribed ADDs during pregnancy, further investigation into this area is warranted

    Sensitivity of the female rat to olanzapine-induced weight gain - far from the clinic?

    Get PDF
    Dear Editor, The recent paper by Chintoh and colleagues (2008) reporting olanzapine-induced dysfunction in glucose metabolism, enhanced visceral fat and reduced locomotor activity in female rats was highly interesting as it illustrated olanzapine’s ability to replicate aspects of metabolic dysfunction in the rodent model in a similar manner to the human scenario. However, contrary to previous reports in the rat and the clinic, the authors reported no change in body weight or food intake following olanzapine treatment, questioning the validity of the rat model................
    • …
    corecore