

University of Wollongong Research Online

Illawarra Health and Medical Research Institute

Faculty of Science, Medicine and Health

2017

A systematic review of the effect of cannabidiol on cognitive function: relevance to schizophrenia

Ashleigh L. Osborne University of Wollongong, alo649@uowmail.edu.au

Nadia Solowij University of Wollongong, nadia@uow.edu.au

Katrina Weston-Green University of Wollongong, kweston@uow.edu.au

Publication Details

Osborne, A. L., Solowij, N. & Weston-Green, K. (2017). A systematic review of the effect of cannabidiol on cognitive function: relevance to schizophrenia. Neuroscience and Biobehavioral Reviews, 72 310-324.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

A systematic review of the effect of cannabidiol on cognitive function: relevance to schizophrenia

Abstract

Background and objectives Cognitive impairment is a core symptom domain of schizophrenia, neurological disorders and substance abuse. It is characterised by deficits in learning, memory, attention and executive functioning and can severely impact daily living. Antipsychotic drugs prescribed to treat schizophrenia provide limited cognitive benefits and novel therapeutic targets are required. Cannabidiol (CBD), a component of the cannabis plant, has anti-inflammatory and antipsychotic-like properties; however, its ability to improve cognitive impairment has not been thoroughly explored. The aim of this systematic review was to evaluate preclinical and clinical literature on the effects of CBD in cognitive domains relevant to schizophrenia. Methods A systematic literature search was performed across numerous electronic databases for English language articles (January 1990-March 2016), with 27 articles (18 preclinical and 9 clinical studies) included in the present review. Results CBD improves cognition in multiple preclinical models of cognitive impairment, including models of neuropsychiatric (schizophrenia), neurodegenerative (Alzheimer's disease), neuro-inflammatory (meningitis, sepsis and cerebral malaria) and neurological disorders (hepatic encephalopathy and brain ischemia). To date, there is one clinical investigation into the effects of CBD on cognition in schizophrenia patients, with negative results for the Stroop test. CBD attenuates Δ^9 -THCinduced cognitive deficits. Conclusions The efficacy of CBD to improve cognition in schizophrenia cannot be elucidated due to lack of clinical evidence; however, given the ability of CBD to restore cognition in multiple studies of impairment, further investigation into its efficacy in schizophrenia is warranted. Potential mechanisms underlying the efficacy of CBD to improve cognition are discussed.

Keywords

function:, relevance, schizophrenia, systematic, effect, review, cannabidiol, cognitive

Disciplines

Medicine and Health Sciences

Publication Details

Osborne, A. L., Solowij, N. & Weston-Green, K. (2017). A systematic review of the effect of cannabidiol on cognitive function: relevance to schizophrenia. Neuroscience and Biobehavioral Reviews, 72 310-324.

1	Title: A systematic review	of the effect of cannabidiol on cognitive function: Relevance to schizophrenia
2		
3	Authors: Ashleigh L. Osb	orne ¹ , Nadia Solowij ^{2, 3} , Katrina Weston-Green ^{1, 4*}
4		
5	Affiliations:	
6	¹ Centre for Translational	Neuroscience, Illawarra Health and Medical Research Institute, University of
7	Wollongong, 2522, NSW,	Australia
8	² School of Psychology, F	aculty of Social Sciences, University of Wollongong, 2522, NSW, Australia
9	³ Illawarra Health and Me	dical Research Institute, University of Wollongong, 2522, NSW, Australia
10	⁴ Centre for Medical and M	Aolecular Biosciences, Faculty of Science, Medicine and Health, University of
11	Wollongong, 2522, NSW,	Australia
12		
13		
14	*Corresponding Author:	Dr Katrina Weston-Green
15		School of Medicine
16		Faculty of Science, Medicine and Health
17		University of Wollongong
18		Northfields Avenue, Wollongong, NSW 2522 Australia
19		Tel: +61 2 4252 8506
20		Email: katrina_green@uow.edu.au
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		

31 Abstract

Background and Objectives: Cognitive impairment is a core symptom domain of schizophrenia, neurological disorders and substance abuse. It is characterised by deficits in learning, memory, attention and executive functioning and can severely impact daily living. Antipsychotic drugs prescribed to treat schizophrenia provide limited cognitive benefits and novel therapeutic targets are required. Cannabidiol (CBD), a component of the cannabis plant, has anti-inflammatory and antipsychotic-like properties; however, its ability to improve cognitive impairment has not been thoroughly explored. The aim of this systematic review was to evaluate preclinical and clinical literature on the effects of CBD in cognitive domains relevant to schizophrenia.

Methods: A systematic literature search was performed across numerous electronic databases for English
language articles (January 1990 to March 2016), with 27 articles (18 preclinical and 9 clinical studies) included

41 in the present review.

Results: CBD improves cognition in multiple preclinical models of cognitive impairment, including models of
neuropsychiatric (schizophrenia), neurodegenerative (Alzheimer's disease), neuro-inflammatory (meningitis,
sepsis and cerebral malaria) and neurological disorders (hepatic encephalopathy and brain ischemia). To-date,
there is one clinical investigation into the effects of CBD on cognition in schizophrenia patients, with negative
results for the stroop test. CBD attenuates Δ⁹-THC-induced cognitive deficits.

47 *Conclusions:* The efficacy of CBD to improve cognition in schizophrenia cannot be elucidated due to lack of
48 clinical evidence; however, given the ability of CBD to restore cognition in multiple studies of impairment,
49 further investigation into its efficacy in schizophrenia is warranted. Potential mechanisms underlying the
50 efficacy of CBD to improve cognition are discussed.

- 51
- 52 53 54 55 56 57 58 59

60

61 1 Introduction

62 Since the introduction of 'third generation' atypical antipsychotics in the 1990s, there have been relatively few 63 clinically significant advances in treatment options for patients suffering from affective and non-affective 64 psychotic disorders such as schizophrenia and bipolar disorder [1]. Antipsychotics have therapeutic efficacy in 65 treating some of the positive (hallucinations, delusions) and negative (anhedonia, apathy) symptoms of 66 schizophrenia; however, they are limited in their ability to treat the cognitive domain of the disease [2]. 67 Cognitive impairment is a core symptom underlying many neuropsychiatric disorders. Approximately 75-85% of people with schizophrenia experience deficits in cognition that negatively impact day-to-day living, including 68 69 the ability to maintain employment, relationships and self-care [3]. Cognitive deficits often precede the 70 emergence of other symptoms in schizophrenia, are associated with poor medication compliance and a higher 71 tendency for relapse in first episode psychosis [4]. In fact, cognitive deficits are considered a better prognostic 72 indicator in schizophrenia patients than other symptom domains because the severity of cognitive dysfunction 73 correlates with earlier disease onset [2] and can predict clinical course and future functional outcomes [5]. As 74 current antipsychotic medications show minimal benefits for cognitive impairment [2] and have adverse side-75 effects (such as weight gain and motor disturbances) [6], there is an urgent requirement to identify new pharmacological treatments that can enhance cognitive function and improve the overall quality of life for 76 77 people with schizophrenia. In an effort to address cognitive dysfunction in schizophrenia, the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative was developed that identifies 78 79 7 primary cognitive domains as targets for treatment in schizophrenia [2]. These domains include processing 80 speed, verbal learning and memory, attention and vigilance, reasoning and problem solving, visual learning and 81 memory, social cognition and working memory [2]. The authors [2] recommend that preclinical studies 82 assessing the efficacy and functional outcomes of new pharmacological treatments in schizophrenia models 83 should use behavioural tests that examine domains identified in MATRICS. Likewise, the MATRICS 84 Consensus Cognitive Battery (a battery of 10 tests that examine the MATRICs cognitive domains) should be 85 used in clinical trials that assess the efficacy of potential cognitive-enhancing drugs for schizophrenia, to ensure 86 standardised testing and maximise reproducibility between trials [2].

87

88 *Cannabis sativa* is the most widely used drug in the world and contains over 70 different constituents, including 89 delta-9-tetrahydrocannabinol (Δ^9 -THC) and cannabidiol (CBD) [7]. Compared to the general population, 90 individuals with schizophrenia are twice as likely to consume cannabis, with evidence of worsened psychotic

91 symptoms and a higher incidence of relapse and poor treatment outcomes in users [7]. Cannabis use during 92 adolescence is a well-documented risk factor for developing schizophrenia and lowers the age of symptom onset 93 [8]. Cannabis interacts with the endogenous cannabinoid system and alterations in endogenous cannabinoid 94 signalling have been observed in patients with schizophrenia. For example, studies report elevated levels of the 95 endogenous cannabinoids anandamide (AEA) and 2-arachidonyl glycerol (2-AG) in cerebrospinal fluid and 96 blood samples of patients [9-13], while post-mortem brain tissue and neuroimaging studies report elevations in 97 cannabinoid CB1 receptor density in brain regions implicated in cognition, in people with schizophrenia [14-16]. Interestingly, Δ^9 -THC administration induces symptoms in healthy volunteers that resemble psychosis. 98 99 including hallucinations, delusions, depersonalisation and emotional lability, coupled with cognitive impairment 100 in learning and memory domains [7]. On the other hand, initial observations in the 1970s suggested that the 101 cannabis constituent CBD interferes with the detrimental actions of Δ^9 -THC in terms of psychotic proneness and 102 cognitive dysfunction [17]. Indeed, more recent studies have identified an inverse relationship between CBD 103 content in cannabis strains and the prevalence of psychotic symptoms, such as hallucinations and delusions, 104 suggesting a possible protective effect of CBD [18, 19]. Furthermore, clinical and preclinical studies spanning 105 more than a decade [13, 20-23], demonstrate potential for CBD as an antipsychotic agent against the positive 106 and negative symptoms of schizophrenia (as reviewed in [24]). Despite these findings, evidence of the efficacy 107 of CBD to improve cognitive deficits associated with schizophrenia has not been thoroughly explored. CBD is a 108 particularly interesting target as a novel approach to improving cognition in schizophrenia, in part, due to its 109 strong anti-inflammatory properties [25]. Inflammation, particularly maternal immune activation during 110 pregnancy, is a strong risk factor for schizophrenia pathogenesis and has been linked to the severity of cognitive 111 deficits experienced by individuals [4]. Furthermore, immune system dysfunction has been reported in first 112 episode and antipsychotic-treated schizophrenia patients, implicating this system in the pathogenesis of 113 schizophrenia and as a potential therapeutic target for its treatment [4, 26].

114

115 The aim of the present paper was to provide a detailed systematic literature review of existing preclinical and 116 clinical research examining the effects of CBD on the cognitive domains relevant to schizophrenia, as identified 117 by MATRICS [2]. Research papers included in this review were subdivided into the following categories: 1) 118 studies that examined the ability of CBD to treat cognitive impairment in neuropsychiatric conditions and other 119 neurological disorders, 2) studies that investigated the impact of CBD on cognitive measures during a cannabis 120 or Δ^9 -THC challenge, or in a healthy state, and 3) studies that examined the effects of CBD in inflammatorybased preclinical models of cognitive impairment. Finally, the potential mechanisms of CBD's action oncognitive function, as well as recommendations for future research are discussed.

123

124 2 Methods

125 This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews 126 and Meta-Analyses (PRISMA) guidelines and reporting criteria [27]. The number of studies retained and 127 omitted for this systematic review was recorded for each of the screening stages according to the PRISMA 128 Statement (Figure 1) [27].

129

130 2.1 Search Strategy

A literature search was performed using electronic databases (MEDLINE, Web of Science and Scopus) for original, published, English-language research articles, with publication dates spanning from January 1990 to March 2016. Key words included cannabidiol, cognition, cognitive impairment, memory and learning. Different combinations of search terms were used based on the requirements or limitations of each database. For example, the search strategy for Medline was (cannabidiol AND cognition) or (cannabidiol AND cognitive AND impairment). The reference lists of eligible studies were also screened to identify additional studies.

137

138 2.2 Eligibility Criteria

139 Studies eligible for inclusion in this systematic review must have assessed the effect of CBD on cognitive 140 domains relevant to schizophrenia (as defined in MATRICS) and must have been published in English. All 141 studies were initially screened by title and abstract to ensure that only empirical studies related to the topic were 142 included. Original research articles that passed the initial screening were reviewed in full text. Studies were 143 further excluded that: (1) did not test cognitive domains related to MATRICS, used self-reporting measures to 144 generate cognitive scores or focused on other outcomes (e.g. reward/motivation, anxiety), or (2) used standardised cannabis extracts containing both Δ^9 -THC and CBD, such as oromucosal sprays (Sativex®), 145 146 without appropriate controls (i.e. Δ^9 -THC or CBD only groups) to assess the effects of CBD alone.

147

148 2.3 Data Extraction and Analysis

Following the screening process, original research articles that fit the criterion were further reviewed and the following information was extracted: author, year of publication, journal of publication, aim of the research, 151 sample size, gender, drugs administered and dosage, as well as species and strain for preclinical studies. In 152 addition, details of the CBD intervention were recorded, including the dose, frequency and route of 153 administration, experimental paradigm used, as well as information pertaining to treatment outcomes, such as 154 cognitive tests used (either clinical or behavioural), results of the cognitive testing, results of any biochemical 155 analyses relating to cognition, and the overall conclusion of the research. The detailed information was tabulated 156 and partitioned according to clinical or preclinical research (Tables 1 and 2, respectively).

157

158 3 Literature Search Results

159 The initial search strategy yielded a total of 75 articles from Medline (22 articles), Scopus (25 articles) and Web 160 of Science (28 articles). Duplicate publications were excluded, yielding a total of 39 articles that were screened 161 by title and abstract for eligibility. Nine studies were excluded because they did not use behavioural or clinical 162 tests to assess cognition in the domains identified by MATRICS, they generated cognitive scores through self-163 reported data or they did not report data from cognitive testing (Supplementary Table 1). Two studies 164 investigating the effects of cannabis, and two studies investigating the effects of Sativex®, were excluded as they either lacked adequate control groups (either Δ^9 -THC or CBD only groups) to ascertain the effects of CBD 165 166 alone, or did not report CBD content (Supplementary Table 1). A total of 27 studies passed the screening 167 process and were collated for qualitative synthesis (Tables 1 and 2), including 9 clinical (human) studies 168 (consisting of 1 double-blind, placebo-controlled trial; 1 randomised, double-blind, placebo-controlled trial; 1 169 double-blind, placebo-controlled, cross-over trial; 4 randomised, double-blind, placebo-controlled, cross-over 170 trials and 2 naturalistic, cross-over study designs) and 18 preclinical studies (including 11 mouse, 6 rat and 1 171 non-human primate models). The clinical studies investigated the effects of CBD on: (1) verbal, episodic and 172 recognition memory in cannabis users using naturalistic study designs (n=2); (2) working and social recognition 173 memory, attention, verbal learning and memory and executive function using standardised cannabis extract or 174 Δ^9 -THC challenge paradigms in non-users and cannabis users (n=6); and (3) selective attention in schizophrenia 175 patients (n=1). The preclinical studies included in this review investigated the effects of CBD on cognition in (1) 176 neuropsychiatric modelling of schizophrenia and Alzheimer's disease (n=6); (2) cannabis and Δ^9 -THC challenge 177 paradigms and healthy rodents (n=4); (4) neurological conditions, such as brain ischemia, hepatic 178 encephalopathy, as well as pain (n=5); and (4) inflammation-based models of cognitive impairment (n=3). 179 Domains assessed by the preclinical studies aligned with the cognitive domains described in MATRICS and 180 included working memory, object recognition and social recognition memory, associative learning, procedural

and declarative memory, and spatial learning and memory. In the present review, the literature pertaining to the
effect of CBD on cognitive impairment in pathological states is presented separately to the literature examining
the effects of CBD on cognition in drug-induced and healthy states.

184

185 3.1 Cannabidiol as a therapeutic intervention for cognitive impairment in neuropsychiatric and 186 neurodegenerative disorders

187 3.1.1 Effects of CBD on cognitive function in schizophrenia

There has been limited examination of the clinical efficacy of CBD to treat cognitive dysfunction in 188 189 neuropsychiatric disorders, with one published study that examined effects in psychiatric patients [28] (Table 1) 190 and two studies that utilised a preclinical model of schizophrenia in rodents [29, 30] (Table 2). A study 191 conducted by Hallak et al [28] investigated the therapeutic efficacy of CBD to improve cognitive deficits in 192 patients with schizophrenia. Testing comprised of two sessions, the first of which subjected participants to a 193 Stroop Colour Word test, followed by a second session (one month later) where participants were administered a 194 single dose of CBD (300 mg or 600 mg) or placebo then performed the Stroop Colour Word test one-hour post-195 treatment, in order to assess the effects of CBD on selective attention [28]. The number of errors made in the 196 Stroop Colour Word test significantly decreased between testing sessions in both the 300 mg CBD-treated and 197 the placebo groups, with a similar trend observed in the 600 mg CBD-treated group [28]. The improvement across all experimental groups, particularly the placebo-treated group, is indicative of a learning effect rather 198 199 than a treatment effect; the authors attributed the learning effect to the short (one month) between-test duration 200 [28]. In addition, the lack of a control group (healthy volunteers) in the experimental design makes it difficult to 201 determine if this cohort of individuals with schizophrenia had underlying selective attention deficits in 202 comparison to the general population prior to the commencement of treatment. The only other studies to 203 investigate the efficacy of CBD to treat cognitive deficits associated with schizophrenia were conducted in a 204 preclinical schizophrenia model of N-methyl-D-aspartate (NMDA) receptor hypofunction, using the antagonist 205 MK-801 [29, 30]. A study conducted by Deiana et al [29] administered CBD (5, 12 or 30 mg/kg) 30 minutes 206 prior to MK-801 administration (0.08 mg/kg) and then tested social recognition memory in male Wistar rats. 207 Acute pre-treatment with CBD did not prevent the MK-801-induced deficits in social recognition memory, 208 while CBD administration to control rats had no significant effect on social recognition [29]. In another MK-801 209 (1 mg/kg) study, mice were administered CBD for 22 days then subjected to the Novel Object Recognition 210 (NOR) test [30]. The discrimination index (measured as the ratio of time spent exploring the novel object to the total time spent exploring either the novel or familiar objects) was significantly higher in MK-801-treated mice administered 60 mg/kg CBD compared to controls, while 30 mg/kg CBD had no significant effect on the discrimination index [30]. As rodents have a natural tendency to explore novel objects, a reduction in the discrimination index demonstrates impaired object recognition memory [31]. Therefore, the results of these two studies suggest that high doses of CBD can alleviate object recognition memory dysfunction, but not social recognition memory in the MK-801 rodent model of schizophrenia.

217

218 3.1.2 Effects of CBD on cognitive function in Alzheimer's disease

219 The therapeutic efficacy of CBD to treat cognitive deficits has also been examined in four studies using 220 neurodegeneration rodent models of Alzheimer's disease (AD) [32-35] (Table 2). A study conducted by Martin-221 Moreno et al. [32] used intraventricular injection of β -amyloid (A β) to model AD, as A β plaque formation in the 222 brain is a characteristic feature of AD pathogenesis. A β -injected mice displayed increased latency times to find a 223 hidden platform in the Morris Water Maze, indicating impairment to spatial memory [32]. Conversely, Aβ-224 injected mice administered CBD (20mg/kg) had latency times similar to controls, suggesting that CBD 225 attenuates A β -induced deficits in spatial learning and memory [32]. Iron accumulation in the brain is also 226 implicated in the pathogenesis of AD and administration of iron to rodents during the neonatal period mimics 227 the persistent memory deficits observed in Alzheimer's patients in the clinic [33]. Male rats subjected to iron-228 overload during postnatal days 12-14 had a significantly lower recognition index during the NOR test compared 229 control rats, indicating impaired recognition memory [33]. Acute CBD administration (10 mg/kg) significantly 230 increased the recognition index of iron-overload rats compared to the vehicle controls, while chronic (2 weeks) 231 CBD administration restored recognition memory in iron-overload rats in both the 5 mg/kg and 10 mg/kg 232 dosage groups [33]. Two studies used a double transgenic mouse model of AD that co-expresses two of the 233 three mutant genes implicated in familial AD pathogenesis, amyloid precursor protein (APP) and presenilin 1 234 (PS1) [36], and exhibits accelerated amyloid pathology and deficits in object and social recognition memory 235 [34, 35]. Chronic CBD administration (20 mg/kg) in APPxPSI mice significantly increased the time spent 236 interacting with the novel object in the NOR test compared to vehicle-treated APPxPSI mice [34], 237 demonstrating improved recognition memory in the CBD-treated mice. In the Social Preference test (which 238 assesses social recognition memory based on the fact that rats prefer to interact with unfamiliar rats) all groups 239 except the vehicle-treated APPxPSI mice demonstrated a preference for the novel rat, suggesting that CBD 240 administration restores social recognition memory in this AD model [34]. On the other hand, CBD treatment did 241 not affect associative learning in this mouse model of AD, as evidenced during the Fear Conditioning paradigm 242 [34]. A subsequent long-term study (8 months) conducted by the same group investigated the ability of CBD to 243 prevent cognitive deficits associated with AD using the double transgenic APPxPSI mouse model [35]. CBD 244 (20 mg/kg) was administered daily for 8 months, after which time mice underwent a series of behavioural tests 245 (Fear Conditioning Paradigm, Social Preference Test and the Elevated Plus Maze) [35]. The authors confirmed 246 their previous finding of improved social recognition memory with chronic CBD administration, demonstrating 247 that CBD is able to prevent the social recognition memory deficits of AD, but not associative learning deficits 248 [35].

249

250 *3.1.3 Conclusions*

251 The only clinical trial to investigate the efficacy of CBD to treat cognitive dysfunction in a neuropsychiatric 252 disorder did not find any acute treatment effects of CBD on attention in the Stroop Colour Word test in 253 schizophrenia patients [28]. On the other hand, the two preclinical reports showed that CBD attenuated object 254 recognition memory deficits in an NMDA receptor hypofunction model of schizophrenia, with no effect on 255 social recognition memory [29, 30]. Further research is required to investigate the potential of CBD to improve 256 cognitive deficits in schizophrenia following a long-term CBD treatment period. In addition, to fully ascertain 257 the potential benefits of CBD treatment on cognition in schizophrenia, further studies using tests that align with 258 MATRICS are required. Several preclinical models demonstrate improved recognition, social recognition and 259 spatial memory in AD paradigms following acute and chronic CBD treatment [32-35]. These results may have 260 important implications for the treatment of neurodegenerative disorders; however, extensive randomised, 261 controlled clinical trials are needed to confirm that findings translate to human patients.

262

263 3.2 Effects of CBD on cognition in healthy and drug-induced states

Eight studies explored the impact of CBD on cognitive function influenced by cannabis, while no studies have explored the effect of CBD on cognition in other drug-induced states (e.g. opioid, amphetamine, nicotine, alcohol). Two studies examined the influence of CBD on cognitive function in cannabis users during an intoxicated and un-intoxicated state (using their preferred cannabis strains) [37, 38] (Table 1), while 4 studies investigated the effects of CBD on cognitive function following Δ^9 -THC administration to human participants [39, 40] (Table 1), rats and monkeys [41, 42] (Table 2). Three studies examined the effect of CBD on cognition following administration of standardised cannabis extracts to human participants [43-45] (Table 1). Lastly, three studies investigated the effect of CBD alone on cognitive function in healthy participants [46] (Table 1) and rats

272 [47, 48] (Table 2).

273

274 *3.2.1 Effects of CBD on cognitive functioning in cannabis users*

275 The relative ratio of Δ^9 -THC and CBD varies greatly in cannabis strains, particularly with the introduction of 276 high potency (high Δ^9 -THC) strains to the market, such as sinsemilla or 'skunk' (20% Δ^9 -THC: <0.5% CBD) that contain virtually no CBD (compared to previous strains that contained a 2:1 ratio of Δ^9 -THC:CBD) and are 277 associated with a higher risk of psychosis [49]. Morgan et al [37] investigated the relationship between the CBD 278 279 content of cannabis strains and cognitive functioning of users. Cannabis users were divided into two groups based on CBD content, ie: low (<0.14%) and high (>0.75%) CBD content groups (n=22 per group), based on 280 281 sample analysis of the self-provided cannabis that participants smoked during this naturalistic study [37]. 282 Participants were tested on verbal and category fluency, prose recall and source memory to assess verbal and 283 episodic memory [37]. This cognitive testing was conducted on two separate occasions: in either drug-free or 284 acutely intoxicated states. During acute intoxication, users of low CBD strains performed significantly worse in 285 the Prose Recall Test compared to users of high CBD cannabis strains, while no changes were observed in 286 Source Memory or Verbal and Category Fluency tests [37]. The cannabis sample analysis revealed no difference 287 in Δ^9 -THC levels between the two groups; therefore, the results suggest that high cannabis CBD concentrations may be protective against Δ^9 -THC-induced verbal memory impairments. It is worth noting that the authors 288 289 identified differences in other parameters between the high and low CBD cannabis groups, including higher 290 alcohol consumption and lower Wechsler Adult Reading Test scores (reflecting reduced verbal memory ability) in the low CBD group; however, these factors were added as covariates in memory data analyses [37]. In 291 292 addition, the authors suggested that differences in these other parameters were unlikely to explain the difference 293 in verbal memory between the low and high CBD concentration groups during acute intoxication as 294 performance did not differ between the low and high CBD groups during baseline (unintoxicated) testing [37]. In another study conducted by the same group, the relationship between cognitive function and the ratio of Δ^9 -295 296 THC to CBD content in plant strains was examined in un-intoxicated chronic cannabis users [38]. Cannabis 297 users were divided into two groups depending on the amount of cannabis they consumed i.e. recreational (n=54) 298 or daily (n=66) users. Cognitive function was tested using Recognition Memory, Prose Recall and Source 299 Memory tests. Additionally, participant hair samples were analysed for cannabinoid content [38]. The two 300 groups were then further subdivided based on the presence or absence of CBD in the hair sample. Individuals

301 who consumed cannabis strains containing CBD (as evidenced by the presence of CBD in the hair samples) 302 displayed significantly better recognition memory compared to users who consumed cannabis strains with low 303 CBD, regardless of the degree of cannabis use (daily or recreational) [38]. The presence or absence of CBD in 304 hair samples did not influence Prose Recall or Source Memory test performance; however, when divided based 305 on frequency of cannabis use, daily users of high Δ^9 -THC cannabis strains performed poorly in these tests 306 compared to users of low Δ^9 -THC strains [38]. These results demonstrate that daily exposure to high Δ^9 -THC 307 cannabis is associated with impaired verbal learning and memory, as well as episodic memory [38]. On the other hand, the presence of CBD in cannabis appears to protect against recognition memory impairment in 308 309 unintoxicated, chronic daily and recreational cannabis users, but has no influence on verbal learning and 310 memory, or episodic memory [38]. These naturalistic studies suggest that CBD may play a protective role in 311 specific aspects of cannabis-induced cognitive impairment; however, considering the numerous constituents 312 found in cannabis, it is difficult to conclude that any protective effects are wholly attributable to CBD.

313

314 3.2.2 Effects of CBD on cognitive function in Δ^9 -THC administration studies

The administration of Δ^9 -THC is a paradigm that allows investigation of CBD effects on cognition during an 315 intoxicated state while removing the confounding factors associated with natural cannabis, including other 316 317 cannabis constituents and differing CBD concentrations. For example, Hindocha et al [39] investigated the 318 effects of Δ^9 -THC or CBD (administered independently or in combination) on emotional facial recognition in 319 cannabis users with a diagnosis of schizotypy. Participants were divided into groups depending on the extent of 320 cannabis use and schizotypy score (n=12 per group). Participants were randomised to receive Δ^9 -THC (8 mg), 321 CBD (16 mg), Δ^9 -THC+CBD (8 mg+16 mg) or placebo over 4 drug sessions in a crossover design, with a one 322 week washout period between each session [39]. Participants were presented with faces displaying varying emotional intensity (20-100%), including fearful, angry, happy, sad, surprise and disgust. As expected, the 323 324 recognition of facial emotion became more accurate with increased intensity across all groups [39]. Administration of Δ^9 -THC significantly reduced performance in the Emotional Processing Task when subjects 325 326 were presented with faces graded at 40% emotional intensity, while administration of CBD with Δ^9 -THC 327 improved accuracy of emotion identification compared to the Δ^9 -THC only group [39]. Interestingly, CBD 328 administration significantly improved accuracy in the emotional processing task beyond placebo levels [39]. 329 There was no main effect of frequency of cannabis use or schizotypy diagnosis. Therefore, these results 330 demonstrate that CBD enhanced emotional facial recognition and limited the detrimental effects of Δ^9 -THC in

331 cannabis users, regardless of frequency of use or schizotypy score [39]. Another study conducted by Englund et al [40] directly tested the hypothesis that CBD prevents Δ^9 -THC-induced cognitive impairment by pre-treating 332 333 healthy human participants with either CBD or placebo prior to receiving a Δ^9 -THC challenge (1.5 mg). CBD-334 treated subjects performed better in delayed recall (during the Hopkins Verbal Learning Task Revised) 335 compared to the placebo pre-treatment group, indicating that CBD treatment prevents verbal learning and memory deficits produced by Δ^9 -THC [40]. In the Digit Span Forward task, which assesses working memory, 336 the placebo pre-treated group performed significantly worse following the Δ^9 -THC challenge compared to their 337 corresponding baselines scores [40]. CBD pre-treatment resulted in similar scores to baseline (i.e. prior to the 338 Δ^9 -THC challenge), indicating that CBD limited the detrimental effects of Δ^9 -THC on working memory [40]. 339 CBD pre-treatment was unable to prevent Δ^9 -THC-induced working memory impairment in the Digit Span 340 341 Reverse task (also measures working memory), as performance was significantly worse in both groups 342 following the Δ^9 -THC challenge (CBD and placebo pre-treatment), compared to baseline scores, possibly due to the increased difficulty of this test [40]. Overall, the findings of Englund et al [40] demonstrated that CBD pre-343 344 treatment prevents Δ^9 -THC-induced deficits in verbal learning and memory, and specific (but not all) aspects of 345 working memory in humans. A preclinical study conducted by Hayakaya et al [41] investigated treatment 346 effects of various doses of CBD (3, 10 or 50 mg/kg) on cognition in Δ^9 -THC pre-treated (1 mg/kg) male mice. 347 Pre-treatment with Δ^9 -THC impaired mouse performance in the Eight-arm Radial Maze, demonstrating impaired spatial learning and memory [41]. Low doses of CBD (3 mg/kg) restored performance in this test to control 348 349 levels [41], demonstrating that CBD can improve Δ^9 -THC-induced deficits in spatial learning and memory. On 350 the other hand, high doses of CBD (50 mg/kg) significantly increased the number of incorrect entries compared 351 to vehicle administration following Δ^9 -THC pre-treatment. Interestingly, high doses of CBD administered alone 352 did not impair performance in the Eight-arm Radial Maze, suggesting that CBD may potentiate the detrimental 353 effects of Δ^9 -THC on spatial learning and memory when administered to mice at high doses [41]. Indeed, a previous study demonstrated that pre-treatment with high doses of CBD increased Δ^9 -THC concentrations in the 354 blood and brain of rats [50], suggesting that a potential mechanism by which high dose CBD enhances Δ^9 -THC-355 356 induced cognitive impairment may be through altered Δ^9 -THC metabolism. A study conducted by Wright et al 357 [42] examined the effects of CBD on cognition in male Rhesus monkeys following acute Δ^9 -THC pre-treatment. The CBD/ Δ^9 -THC group performed significantly better on the Visuospatial Paired Associates Learning task, 358 which assesses visual learning and memory, compared to the vehicle-treated Δ^9 -THC group [42]. In addition, 359 360 CBD limited Δ^9 -THC-induced deficits in procedural learning, as evidenced during the Rotating Turntables task

361 [42]. Conversely, CBD did not improve the Δ^9 -THC-induced deficits in spatial working memory in the Self-362 Ordered Spatial Search task. In fact, the CBD treatment group performed significantly worse compared to the 363 control group (no Δ^9 -THC) [42].

364

365 3.2.3 Effects of CBD on cognitive function using standardised cannabis extract

The administration of standardised cannabis extracts (containing a defined ratio of Δ^9 -THC to CBD) with 366 appropriate control groups (either Δ^9 -THC or CBD only groups) has also been employed as a paradigm that 367 allows investigation of CBD treatment effects on cognition. For example, Roser et al [43] examined the effects 368 of acute standardised cannabis extract (10 mg Δ^9 -THC+5.4 mg CBD) or Δ^9 -THC (10 mg) administration in 369 370 healthy volunteers. Participants were asked to perform the Choice Reaction task, which assesses selective 371 attention, while the amplitudes of auditory P300 event-related potentials were observed. In this paradigm, a 372 sequence of repetitive tones was randomly interrupted by a tone with a different frequency, to elicit an auditory evoked P300 wave, a cognitive event-related potential (i.e. an electrophysiological response) that is measurable 373 374 using electroencephalography (EEG). Reduced amplitudes of P300 waves are consistently found in 375 schizophrenia patients, indicating deficient attention and working memory [43]. Reaction times in the Choice 376 Reaction task did not differ between the cannabis extract and Δ^9 -THC groups; however, both the cannabis 377 extract and Δ^9 -THC only groups displayed reduced P300 wave amplitudes compared to the placebo group, indicating that CBD was not able to attenuate deficits induced by Δ^9 -THC in this paradigm [43]. In another 378 379 study, Schoedel et al [44] investigated the effects of the oromucosal spray Sativex® (GW Pharmaceuticals Ltd. 380 Salisbury, UK) and dronabinol (synthetic THC: Marinol, Solvay Pharmaceuticals, Brussels, Belgium) on the 381 cognitive performance of recreational cannabis users. Participants were administered Sativex® of varying doses (10.8 mg Δ^9 -THC+10 mg CBD; 21.6 mg Δ^9 -THC+20 mg CBD; and 43.2 mg Δ^9 -THC+40 mg CBD), or 382 383 dronabinol (20 mg and 40 mg Δ^9 -THC), or placebo (control) and asked to perform several tests of attention and working memory (Choice Reaction Time task, Divided Attention test and the Short-Term Memory test) [44]. No 384 385 significant effects of treatment were observed in the Choice Reaction Time or Divided Attention tasks; however, 386 high dose dronabinol (40 mg) significantly increased Short-Term Memory test reaction time compared to the placebo [44]. This result was not observed with Sativex[®] containing both Δ^9 -THC and CBD suggesting that 387 CBD attenuated the detrimental effect of high dose Δ^9 -THC on working memory performance in that study [44]. 388 389 Further evidence that cannabis medicinal extracts do not impair cognition was reported by Wade et al [45], who found that administration of medical cannabis (2.5 mg Δ^9 -THC+2.5 mg CBD) or CBD alone (2.5 mg) to 390

391 multiple sclerosis patients did not affect their performance on the Short Orientation Memory Concentration

392 (SOMC) test compared to placebo, while administration of Δ^9 -THC (2.5 mg) alone did impair performance.

393

394 3.2.4 Effects of CBD alone on cognitive function in healthy models

395 A study conducted by Bhattacharyya et al [46] investigated the effects of Δ^9 -THC (10 mg), CBD (600 mg) or 396 placebo on brain activity using neuroimaging techniques (functional magnetic resonance imaging, fMRI) in 397 healthy volunteers while performing cognitive tasks (Verbal Memory task to assess verbal learning and memory, Viewing Fearful Faces task to assess social recognition and Response Inhibition tasks to assess 398 executive function). Interestingly, neither Δ^9 -THC nor CBD had any effect on cognitive task performance 399 400 compared to the placebo [46]; a result that coincides with observations in healthy male Sprague-Dawley rats 401 where acute CBD administration had no effect on spatial learning and memory in the Eight-arm Radial Maze 402 [47]. In addition, Ward et al [48] found that acute CBD administration (2, 5 or 20 mg/kg) to female C57Bl mice 403 30 minutes prior to performing an AutoShaping task had no effect on conditioned learning. Contrary to the lack 404 of change in behavioural data reported by Bhattacharyya et al [46], they reported also that Δ^9 -THC and CBD 405 had opposite effects on regional brain activation while the tasks were being performed [46]. In contrast to Δ^9 -406 THC, CBD augmented striatal, anterior cingulate, medial and lateral prefrontal cortical activation during the 407 Verbal Memory task. CBD also increased activation in the parahippocampal gyrus, left insula and caudate nucleus during the Response Inhibition task, while Δ^9 -THC attenuated activity relative to the placebo [46]. In 408 409 the Viewing Fearful Faces task, CBD attenuated amygdala activation, which the authors suggest may be due to 410 the anxiolytic properties of CBD [46]. While the 600 mg dose of CBD that was utilised by Bhattacharyya et al 411 [46] had no apparent effect on cognition in healthy volunteers, it is interesting to note the contrasting brain region activation observed between the CBD and Δ^9 -THC treatment groups and further investigation into the 412 413 functional implications of the result are warranted.

414

415 *3.2.5 Conclusions*

There is a disparity between studies investigating the effects of CBD on cognitive performance in cannabis users in an intoxicated state and following Δ^9 -THC challenge. In cannabis-induced cognitive impairment, CBD attenuates deficits in episodic and recognition memory, and verbal learning and memory; however, these beneficial effects vary depending on the duration (acute use vs. chronic use) and frequency (recreational vs. daily) of cannabis use [37, 38]. The results of Δ^9 -THC challenge studies suggest that CBD can improve visual

learning and memory, and procedural learning performance [42], while preventing Δ^9 -THC-induced 421 impairments to verbal learning and memory, and improve some working memory tasks during a Δ^9 -THC 422 423 challenge [40], with no effect on spatial learning and memory during Δ^9 -THC challenge [41]. In contrast, studies 424 investigating the effects of standardised cannabis extracts found no significant effect of CBD on cognitive 425 performance [43, 44], demonstrating that the one-to-one ratio of Δ^9 -THC to CBD has no detrimental effects on 426 cognition [44]. In addition, pure CBD administered to healthy human participants and rats has no effect on cognition [46-48]. There is some crossover in cognitive improvements between human cannabis and Δ^9 -THC 427 challenge studies; however, inconsistencies in dosage between these studies pose difficulties in direct 428 429 comparison of treatment effects. On that note, it is important to consider dosage differences between these studies, i.e. the ratio of CBD to Δ^9 -THC in the Δ^9 -THC challenge studies in humans (16 mg CBD: 8 mg Δ^9 -430 THC) differed to the ratios in *Cannabis sativa* strains (1.5% CBD: 12-18% Δ^9 -THC) [49]. The levels of Δ^9 -THC 431 432 used to induce cognitive impairment (preclinical: 0.5, 1.0 mg/kg; clinical: 1.5 mg and a higher dose of 8 mg) and the dose of CBD used in clinical (16 mg and 600 mg) and preclinical studies (0.5, 1, 3, 10 and 50 mg/kg) 433 434 varied. Future preclinical studies investigating the effects of CBD treatment should consider the translation of CBD doses in animals to human doses, as low doses of CBD in mice had beneficial effects on cognition, whilst 435 high CBD doses enhanced the detrimental effects of Δ^9 -THC on cognition, possibly by impairing Δ^9 -THC 436 437 clearance [41]. The bioavailability, peak concentrations and behavioural effects of cannabinoids vary depending 438 on the route of administration [51], which also differed between the studies reviewed in this section (Δ^9 -THC 439 and CBD were administered orally [40, 43-46] or inhaled [39] in the clinical studies, while the preclinical 440 studies used intramuscular [42] and intraperitoneal injections [47, 48]). Therefore, due to the differences in dose 441 and route of administration, it is difficult to draw comparisons between the studies. Finally, although CBD is the 442 main non-intoxicating component of cannabis, the plant contains over 70 different cannabinoids and, therefore, 443 only associations can be drawn from studies investigating the effects of cannabis on cognition. Overall, further 444 research is required to elucidate the therapeutic benefits of CBD on cognitive impairment in cannabis users and following Δ^9 -THC administration in healthy participants. 445

446

447 3.3 Cannabidiol as a therapeutic intervention for cognitive impairment in neurological disorders

448 3.3.1 Effects of CBD on cognitive functioning in preclinical brain ischemia models

449 Two studies have investigated the effects of CBD on cognitive impairment in preclinical models of brain
450 ischemia [52, 53] (Table 2). Ischemic brain injury produces irreversible changes in the brain, including neuronal

451 damage and apoptosis that result in impaired memory, attention and executive functioning [52, 53]. A study 452 conducted by Pazos et al. [52] investigated the effects of CBD administration on cognition in Wistar rats 453 exposed to hypoxic-ischemic (HI) brain injury after birth, modelled using left common carotid artery 454 electrocoagulation techniques. Rats were administered a single subcutaneous injection of either CBD (1 mg/kg) 455 10 minutes post-HI induction and were subjected to the NOR test. Vehicle-treated HI rats had less preference 456 for the novel object compared to non-HI (sham) rats [52], indicating impairment to recognition memory in the 457 model. Interestingly, CBD administration attenuated this deficit, returning novel object preference to control 458 (sham) levels [52]. Spatial learning and memory deficits were observed in a similar model of brain ischemia in 459 adult rodents [53]. In a study by Schiavon et al [53], groups of mice were administered either CBD (3, 10 or 30 460 mg/kg) or vehicle, 30 minutes prior to a bilateral common carotid artery occlusion to induce brain ischemia (or 461 sham surgery for controls). Mice were then treated again with CBD or vehicle 3, 24 and 48 hours post-surgery, 462 and then underwent a Morris Water maze test one-week post-surgery to examine treatment effects on spatial and memory performance [53]. Vehicle-treated ischemic mice took longer to find the submerged platform than 463 464 control mice, indicating impaired spatial learning and memory in the ischemia model [53]. On the other hand, 465 mice treated with CBD (pre- and post-surgery 3, 10, or 30 mg/kg) had a lower latency to find the platform than 466 vehicle-treated ischemic mice, indicating that CBD prevented the spatial learning and memory deficits induced 467 by ischemia [53]. Taking both ischemia model studies into consideration, CBD appears to have a 468 neuroprotective role and is able to both attenuate and prevent the learning and memory deficits induced by brain 469 hypoxia.

470

471 3.3.2 Effects of CBD on cognitive functioning in preclinical hepatic encephalopathy models

472 Hepatic encephalopathy (HE) is a disorder that occurs due to build-up of toxic substances in the bloodstream 473 during acute and chronic liver failure. HE manifests symptoms such as personality disturbances, impairments to 474 muscular co-ordination, attention and other cognitive deficits [54-56]. In rodents, exposure to the hepatotoxin 475 thioacetamide (TAA) is used to model acute HE [54], while chronic HE is induced by bile duct ligation (BDL) 476 [55, 56]. Three preclinical studies involving HE modelling of cognitive impairment were identified during the 477 literature search. In one study, acute CBD administration (5 mg/kg) improved the performance of TAA mice 478 compared to vehicle-treated TAA mice in the eight-arm maze test, a measure of spatial learning and memory 479 [54]. Another two studies investigated the effects of chronic CBD administration at the same dose (5mg/kg) 480 using a chronic model of HE induced by BDL [55, 56]. Female Sabra mice subjected to BDL displayed a 481 significantly higher percentage of entries in the Eight-Arm Radial Maze compared to sham-treated mice 3 weeks 482 post-surgery, demonstrating spatial learning and memory impairment in this model [55, 56]. Following 4 weeks 483 of CBD treatment, CBD-treated BDL mice had a lower percentage of errors compared to vehicle-treated BDL 484 mice, indicating that chronic CBD administration improves spatial learning and memory in this model [55, 56]. 485 Likewise, BDL mice performed significantly worse in the T-Maze test compared to the Sham group, while CBD 486 administration increased the number of entries, suggesting improved working memory by CBD in BDL mice 487 [55]. Overall, these results suggest that chronic CBD treatment can attenuate working memory deficits, while improving spatial learning and memory with both acute and chronic treatment in a HE model. 488

489

490 *3.3.3 Conclusions*

The effect of CBD on cognitive function in neurological disorders has been investigated in preclinical models of brain ischemia and HE. Acute CBD administration improved recognition memory following impairment due to brain ischemia and prevented spatial learning and memory deficits [52, 53]. Acute and chronic CBD administration improved the spatial learning and memory, and working memory deficits induced by HE [54-56]. The evidence investigating the efficacy of CBD to treat cognitive impairment in neurological disorders is limited and further investigation of the apparent neuroprotective effect of CBD is warranted.

497

498 3.4 Cannabidiol as a therapeutic intervention in inflammation-based models of cognitive impairment

499 The link between the immune system and cognition has been well established [4, 57] as inflammatory states, 500 including increased pro-inflammatory signalling, have been linked to cognitive dysfunction [4]. In healthy 501 people, increased levels of pro-inflammatory cytokines (small molecules involved in immune system signalling) 502 have been associated with poor performance in tasks that assess recognition and working memory, attention and 503 executive function; cognitive domains that are affected in schizophrenia [58, 59]. In the current review, three 504 preclinical studies investigated the effect of CBD on cognition using inflammation-based models [60-62] (Table 505 2). One study used cecal ligation and puncture (CLP) as a model of systemic inflammatory disease (sepsis) that 506 leads to neurological abnormalities including disorientation, lethargy, confusion and coma [60]. The authors 507 assessed the effect of acute and sub-chronic CBD administration on cognitive function and oxidative parameters 508 in male Wistar rats following CLP induction [60]. In the first experiment, rats received an acute injection of 509 CBD (2.5, 5 or 10 mg/kg) immediately after CLP and were sacrificed after 6 hours [60]. In the second 510 experiment, rats received sub-chronic CBD administration (2.5, 5 or 10 mg/kg daily for 9 days) following CLP

511 induction and were subjected to the Inhibitory Avoidance task, which measures associative learning [60]. Both the vehicle-treated sham rats and CBD-treated CLP rats improved performance between training and test 512 513 sessions demonstrating a positive learning and memory effect; however, no significant difference was observed 514 in vehicle-treated CLP rats, indicating memory impairment due to sepsis [60]. The improvement in associative 515 learning by CBD treatment was evident not only at the same effective dose used in the HE models (5 mg/kg) 516 [54-56], but also at lower (2.5 mg/kg) and higher (10 mg/kg) doses of CBD. Overall, these results suggest that 517 sub-chronic CBD administration can attenuate the associative learning deficits produced in the CLP-induced 518 sepsis model over a range of doses.

519

520 In a study conducted by Barichello et al [61], male Wistar rats were administered a S.pneumoniae injection, 521 which is used to model pneumococcal meningitis. Approximately one third of survivors of pneumococcal 522 meningitis infection present with long-term cognitive impairment, including poor performance in memory tasks and generalised 'cognitive slowing' [63], possibly due to the infiltration of pro-inflammatory molecules in the 523 524 brain [61]. Following pneumococcal meningitis induction, rats displayed impaired associative learning in the 525 Inhibitory Avoidance task, a result that was not apparent in the sham treatment group. Importantly, sub-chronic 526 (9 days) CBD administration (10 mg/kg, but not 2.5 or 5 mg/kg) restored associative learning in the 527 pneumococcal meningitis model of cognitive impairment [61]. Therefore, similar to the CLP-induced sepsis 528 model, sub-chronic administration of CBD can also attenuate the deficits in associative learning produced by 529 pneumococcal meningitis. Campos et al [62] induced cerebral malaria in mice using Plasmodium berghei-530 ANKA (PbA) infection. Cerebral malaria manifests as seizures, headache, severe cognitive impairment and 531 often results in death in humans [62]. Three days post infection mice were administered CBD (30 mg/kg) or 532 vehicle, followed by treatment with the anti-malarial drug, Artesunate, at the peak of the infection (5 days post 533 infection) [62]. Behavioural testing 5 days post-infection showed that vehicle-treated PbA/Artesunate mice 534 performed significantly worse on the NOR test and Morris Water maze, demonstrating persistent recognition 535 and spatial memory impairments following malaria treatment [62]. On the contrary, PbA/Artesunate mice 536 treated with CBD performed the memory tasks at control levels, indicating that CBD prevents PbA-induced 537 cognitive deficits [62]. Based on these results, the authors suggested that CBD may be a potential adjunctive 538 therapy for the treatment and/or prevention of the neurological deficits that result from cerebral malaria.

539

540 *3.4.1 Conclusions*

541 Overall, inflammatory-based models of cognitive impairment consistently show that short-term and long-term 542 CBD administration can attenuate deficits in spatial learning and memory, recognition memory and associative 543 learning [60-62], which are cognitive domains affected in schizophrenia, as identified by MATRICS [2]. Given 544 that CBD can improve cognition in preclinical models of inflammation-induced cognitive dysfunction it is 545 reasonable to speculate that CBD may improve cognition in preclinical models of schizophrenia, particularly as 546 growing evidence suggests an underlying immune dysfunction in the pathogenesis of this disorder [4].

547

548 4 Potential mechanisms underlying CBD's effects on cognition

549 The present literature review provides the first systematic analysis of the available clinical and preclinical 550 evidence on the effects of CBD on cognitive function. The limited evidence investigating the impact of CBD on 551 cognitive deficits in neuropsychiatric disorders showed that CBD had no effect on selective attention in 552 schizophrenia outpatients [28], while CBD administration attenuated object recognition memory impairment 553 [30], but was unable to prevent social recognition memory deficits induced by MK-801 administration in 554 rodents [29]. In preclinical models of AD, CBD treatment improved social and object recognition memory, with 555 no effect on associative learning [32-35]. No human clinical evidence of CBD treatment effects on cognition in 556 AD could be located during this literature search. The limited studies conducted in neurological disorders 557 suggest that CBD has therapeutic benefits for spatial learning and memory, and recognition memory deficits 558 induced by hypoxic brain injury [52, 53]. In preclinical models of hepatic encephalopathy, acute and chronic 559 CBD administration improved spatial learning and memory, and working memory impairments [54-56]. CBD 560 administration improved learning and memory function in preclinical models of inflammatory disorders such as 561 sepsis [60], pneumococcal meningitis infection [61] and cerebral malaria [62]. In cannabis users, exposure to 562 CBD attenuated episodic and recognition memory, and verbal learning and memory deficits; however, these 563 beneficial effects varied depending on the duration and frequency of cannabis use [37, 38]. In Δ^9 -THC challenge 564 studies, CBD intervention showed improvement in several cognitive domains (visual learning and memory, 565 procedural learning, verbal learning and memory, and working memory tasks) [40, 42]. CBD dosage is 566 particularly important to consider for Δ^9 -THC paradigms as low dose CBD had no effect on spatial learning and 567 memory, while high CBD doses potentiated the detrimental effects of Δ^9 -THC [41]. Some studies using standardised cannabis extracts showed that CBD limited the detrimental effects of Δ^9 -THC on cognitive 568 569 function [44, 45], while another study reported contrary findings of no effect [43]. Overall, CBD administration 570 appears to improve cognitive deficits in several domains, with no effect on cognitive function outside 571 pathological and drug-induced states (i.e. healthy humans and animals) [46-48]. The neurobiology of cognition 572 itself is not yet fully understood, but a vast body of evidence demonstrates the involvement of multiple neural 573 networks with complex interactions between various signalling systems [3, 64]. Therefore, it is highly unlikely 574 that CBD's mechanism of action can be wholly attributed to one specific signalling pathway or system. Indeed, 575 the preclinical studies included in this review demonstrate changes in multiple biochemical parameters; such as 576 inflammatory and oxidative stress markers, as well as serotonin and adenosine neurotransmitter signalling, 577 following CBD treatment of cognitive impairment. The role of these systems in the potential mechanisms 578 underlying the effect of CBD on cognitive function is discussed below.

579

580 4.1 Effects of CBD on neuroinflammatory markers

581 Preclinical models of cognitive impairment (see Sections 3.1 to 3.3 of this review) showed that CBD treated 582 cognitive dysfunction in areas of working and recognition memory, associative and spatial learning and 583 memory, and social recognition memory [30, 32-35, 53-56, 60-62]. A number of these preclinical studies also 584 assessed neuroinflammatory markers, including cytokine levels and expression, microglial activation and 585 astrogliosis [32, 55, 56, 61]. Signalling of the pro-inflammatory cytokine, tumour necrosis factor-alpha (TNF- α) 586 was significantly increased in the hippocampus and frontal cortex of preclinical models that exhibited HE or 587 AD-induced spatial learning and memory, working memory and associative learning impairments [32, 55, 56, 588 61]. Improved spatial learning and memory, as well as working memory following CBD administration has been 589 associated with down-regulated hippocampal TNF- α and tumour necrosis factor-alpha receptor 1 (TNFRSF1) 590 mRNA expression, with no change in cortical expression [32, 55, 56]. On the other hand, another study reported 591 down-regulated TNF- α levels in the frontal cortex but not in the hippocampus following CBD administration 592 and improved associative learning [61]. Conversely, cortical TNF- α mRNA expression did not change in AD 593 rats exhibiting CBD-induced social recognition memory improvements [35]. Therefore, the literature is 594 confounding but does suggest a possible involvement of TNF-a and TNFRSF1 signalling in the mechanisms 595 underlying the ability of CBD to improve specific aspects of cognition. In addition, one study reported that 596 expression of the pro-inflammatory cytokine interleukin-6 (IL-6) in the cerebral cortex was not altered by CBD 597 treatment, suggesting that the spatial learning and memory improvements observed in the AD model may not be 598 related to changes in IL-6 signalling [32]. Overall, caution may prudent when interpreting the TNF- α and IL-6 599 results as these studies did not examine both protein and mRNA expression levels, which is important because 600 changes in mRNA expression do not always correlate with changes in functional protein levels [65]. Therefore,

to elucidate the role of pro-inflammatory cytokines in the improvement of cognition following CBD treatment,
 further studies investigating protein and mRNA expression, as well as receptor and downstream signalling
 pathways in brain regions relevant to the domains assessed by cognitive testing is required.

604

605 Studies presented in this review have also investigated the reactivity of immune cells in the brain (such as 606 microglia and astrocytes) in an effort to explain the mechanism of CBD's apparent therapeutic effects on 607 cognitive impairment. In neuroinflammatory states, activation of these immune cells leads to the release of pro-608 inflammatory cytokines that can ultimately result in neuronal cell death [66]. Several preclinical models of 609 cognitive impairment discussed in this review exhibit altered astrocyte and microglial activation [30, 53, 54]. 610 For example, in the model of brain ischemia an increased number of active astrocytes was observed [54], while 611 CBD treatment reduced the number of activated astrocytes. This finding was observed using glial fibrillary 612 acidic protein (GFAP) immunohistochemistry methods to measure reactive astrogliosis (an abnormal increase in 613 astrocytes in response to neuronal death), whereby the number of GFAP-positive cells provided an index of 614 neuroinflammation [54]. Therefore, these results demonstrate that CBD treatment reduces neuroinflammation in 615 this preclinical model of brain ischemia. Astrogliosis was also observed in the MK-801 model of schizophrenia; 616 however, there was no effect of CBD treatment on GFAP-positive cell number indicating that CBD did not 617 attenuate astrogliosis [30]. On the other hand, increased expression of the microglial activation marker, Iba 1, 618 was observed in MK-801-treated rats, while CBD treatment attenuated microglial activation in the medial 619 prefrontal cortex and CA1 region of the hippocampus, but not in the dentate gyrus [30]. Overall, the results from 620 these studies imply that decreasing the pro-inflammatory immune response may serve as a potential mechanism 621 by which CBD treatment restores cognitive function in pathological states. Considering the robust anti-622 inflammatory properties of CBD [67], and the evidence that inflammation is implicated in cognitive deficits (as 623 reviewed in [4]), more research along this line of investigation seems imperative.

624

625 4.2 Effects of CBD on oxidative stress parameters

Two studies included in the present review investigated the link between oxidative stress and cognitive performance [35, 60]. Oxidative damage to lipids was present in the striatum of cognitively impaired CLP (sepsis) rats, which was determined by measuring the levels of thiobarbituric acid reactive substances (TBARS, a by-product of lipid peroxidation and indicator of oxidative stress) [60]. Striatal TBARS levels were attenuated by acute CBD administration [60]. Furthermore, sub-chronic CBD administration attenuated hippocampal CLP- 631 induced lipid oxidative damage and decreased protein carbonyl levels (an indicator of protein damage) 632 compared to controls [60]. In contrast, another study found no change in the oxidative stress marker, F_{2} -633 isoprostanes, in the hippocampus following long-term CBD administration in a double transgenic mouse model 634 of AD [35]. Overall, these studies suggest a specific effect of CBD on oxidative stress parameters in brain 635 regions implicated in learning and memory; however, the results seem dependent on the pathological state and 636 the oxidative stress marker measured.

637

638 4.3 Effects of CBD on neurogenesis and neurotransmission

639 In addition to increased pro-inflammatory signalling (see Section 4.1.1), a decrease in protein levels and gene 640 expression of brain-derived neurotrophic factor (BDNF), a neurotrophic factor critical for learning and memory, was observed in preclinical models of HE and meningitis [55, 56, 61]. BDNF plays an important role in the 641 642 maintenance and survival of neurons, as well as the growth and differentiation of new neurons and synapses. 643 CBD administration significantly increased hippocampal BDNF mRNA expression in the HE model [55, 56]. 644 Hippocampal BDNF levels were not affected by induced meningitis; however, levels in the frontal cortex were 645 decreased and this deficit was restored by CBD treatment [38]. Immunohistochemistry and immunofluorescence 646 techniques have confirmed an increase in hippocampal neurogenesis following CBD administration in a rat 647 model of AD [68]. Therefore, these studies suggest that CBD may promote neurogenesis by increasing BDNF 648 levels, changes in which may correlate with improved functional outcomes in cognition; however, further 649 studies are required to confirm.

650

651 Several studies presented in this review have also investigated the effects of CBD on serotonin and adenosine 652 signalling, due to the role of these neurotransmitters in cognition and inflammation [54-56]. The adenosine A_2 653 receptor (A2AAR) mediates the effects of BDNF on long-term potentiation and synaptic transmission [55]. Co-654 administration of CBD with the A2AA-R antagonist, ZM241385, to cognitively impaired BDL mice blocked 655 CBD-induced improvements in performance in the Eight-arm Radial Maze [55]. This blockade in performance 656 was concurrent with reduced hippocampal TNF- α 1 receptor expression and elevated levels of BDNF expression 657 [55]. Furthermore, ZM241385 administration had no effect on the cognitive function of Sham or BDL mice that did not receive CBD treatment [55]. The authors suggested that CBD may be an indirect agonist of A2AA-Rs 658 659 [55]; indeed, another study found that CBD inhibits adenosine uptake from synaptic terminals prolonging the 660 effects of adenosine on its receptors [69]. In addition to adenosine, two preclinical studies included in this 661 review investigated the influence of CBD on serotonin 5-hydroxytryptamine (5-HT) signalling in the brain in 662 relation to cognition [54, 56]. In a model of HE that exhibited deficits in spatial learning and memory, whole 663 brain 5-HT levels were significantly up regulated compared to controls, while acute CBD administration 664 attenuated this increase in brain 5-HT levels [54]. In addition, 5-HT_{1A} receptor blockade prevented CBD 665 improvements in spatial memory in BDL mice while (paradoxically) decreasing hippocampal TNF- α 1 receptor 666 expression, with no effect on BDNF expression [56]. Overall, these studies suggest an involvement of serotonin 667 5-HT_{1A} and adenosine A_{2A} receptors in the mechanisms underlying CBD-induced improvements in cognition; 668 however, further research is required.

669

670 5 Conclusions and Future Directions

671 In conclusion, the studies presented in the current review demonstrate that CBD has the potential to limit Δ^9 -672 THC-induced cognitive impairment and improve cognitive function in various pathological conditions. Human studies suggest that CBD may have a protective role in Δ^9 -THC-induced cognitive impairments; however, there 673 674 is limited human evidence for CBD treatment effects in pathological states (e.g. schizophrenia). Preclinical 675 evidence suggests that overall CBD improves functioning in cognitive domains of learning and memory, in both 676 Δ^9 -THC-induced and pathological states of cognitive impairment. Importantly, studies generally show no impact 677 of CBD on cognitive function in a 'healthy' model, that is, outside drug-induced or pathological states. Current 678 studies investigating drug-induced or pathological states of cognitive impairment, lack consensus on basic 679 experimental parameters, including effective dose ranges, route of administration, frequency and duration of 680 dosing needed to elicit optimal cognitive outcomes. In terms of schizophrenia, CBD has shown potential to treat 681 the positive and negative symptoms of the disorder in both patients and rodent preclinical models [reviewed in 682 24]. There is limited evidence investigating the therapeutic efficacy of CBD to treat the cognitive deficits of 683 schizophrenia; however, CBD treatment improves cognitive function in other neurological disorders, 684 neuropsychiatric and neuroinflammatory models of cognitive impairment. Therefore, well-designed, 685 randomised, controlled trials conducted in schizophrenia patients will be essential to fully elucidate the potential 686 of CBD to improve cognitive deficits in this disorder. The assessment of biochemical markers, such as 687 circulating inflammatory (cytokines, chemokines) and oxidative stress markers, would be useful to determine 688 the immune profiles of treated patients and whether this correlates with any CBD-induced improvements in 689 cognition. Furthermore, future preclinical studies investigating the underlying mechanisms of action of CBD 690 would benefit from using a wide range of behavioural tests that align with MATRICS, to cover the range of

- 691 cognitive domains impaired in schizophrenia patients. In addition, the use of preclinical models of schizophrenia
- 692 would assist in understanding the neurochemical signalling pathways that CBD acts upon to exert its effects on
- 693 cognition function. The overall importance of this area of research is emphasized by the large percentage of

694 patients who experience cognitive deficits, the impact on their lives and the lack of therapeutic agents currently

available to treat the cognitive symptoms of schizophrenia. This justifies the need for further research to

- evaluate the potential of CBD as a new intervention for cognitive impairment in schizophrenia.
- 697

698 6 Funding and Disclosures

699 This study was supported by the National Health and Medical Research Council (Project Grant 1007593 to NS),

the Australian Research Council (Future Fellowship FT110100752 to NS) and the University of Wollongong

701 (Faculty of Science, Medicine and Health Advancement Grant 2015/SPGA-S/02 to KWG); these sources had no

further role in the literature search, decision to publish, or preparation of the manuscript. The authors have no

conflicts of interest to declare. ALO performed the literature search and prepared the first draft of the

- 704 manuscript, with KWG and NS providing critical input in the discussion, preparation and editing of this
- 705 manuscript. All authors contributed to and have approved the final manuscript.
- 706

707 7 References

- Schubart CD, Sommer IEC, Fusar-Poli P, de Witte L, Kahn RS, Boks MPM. Cannabidiol as a potential treatment for psychosis. Eur Neuropsychopharm. 2014;24(1):51-64.
- 710
 2. Gray JA, Roth BL. Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophrenia Bull. 2007;33(5):1100-19.
- Barch DM, Ceaser A. Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci. 2012;16(1):27-34.
- 4. Meyer U, Schwarz MJ, Müller N. Inflammatory processes in schizophrenia: A promising neuroimmunological target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Therapeut. 2011;132(1):96-110.
- 5. Green MF. Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin
 Psychiatry. 2006;67(9):3-8.
- 6. Weston-Green K, Huang X-F, Deng C. Second Generation Antipsychotic-Induced Type 2 Diabetes: A Role for the Muscarinic M3 Receptor. CNS Drugs. 2013;27(12):1069-80.
- 721 7. Bossong MG, Jansma JM, Bhattacharyya S, Ramsey NF. Role of the endocannabinoid system in brain
 722 functions relevant for schizophrenia: An overview of human challenge studies with cannabis or Δ9 723 tetrahydrocannabinol (THC). Prog Neuro-Psychoph. 2014;52:53-69.
- 8. De Hert M, Wampers M, Jendricko T, Franic T, Vidovic D, De Vriendt N, et al. Effects of cannabis use on age at onset in schizophrenia and bipolar disorder. Schizophr Res. 2011;126(1–3):270-6.
- 9. De Marchi N, De Petrocellis L, Orlando P, Daniele F, Fezza F, Di Marzo V. Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids Health Dis. 2003;2(1):5-.
- 728 10. Giuffrida A, Leweke FM, Gerth CW, Schreiber D, Koethe D, Faulhaber J, et al. Cerebrospinal anandamide
 729 levels are elevated in acute schizophrenia and are Inversely correlated with psychotic symptoms.
 730 Neuropsychopharmacol. 2004;29(11):2108-14.
- 11. Leweke M, Giuffrida A, Koethe D, Schreiber D, Nolden BM, Kranaster L, et al. Anandamide levels in
- 732 cerebrospinal fluid of first-episode schizophrenic patients: Impact of cannabis use. Schizophr Res.
 733 2007;94(1):29-36.

- 12. Leweke M, Giuffrida A, Wurster U, Emrich H, Piomelli D. Elevated endogenous cannabinoids in schizophrenia. Neuroreport. 1999;10(8):1665-9.
- 13. Leweke M, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, et al. Cannabidiol enhances anandamide
 signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012;2(3):e94.
- 14. Newell KA, Deng C, Xu-Feng H. Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Experimental Brain Research. 2006 Jul 2006;172(4):556-60.
- 740 15. Wong DF, Kuwabara H, Horti AG, Raymont V, Brasic J, Guevara M, et al. Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR. NeuroImage. 2010;52(4):1505-13.
- 743 16. Zavitsanou K, Garrick T, Huang XF. Selective antagonist [3H]SR141716A binding to cannabinoid CB1
 744 receptors is increased in the anterior cingulate cortex in schizophrenia. Progress in Neuro 745 Psychopharmacology and Biological Psychiatry. 2004;28(2):355-60.
- 746 17. Perez-Reyes M, Timmons MC, Davis KH, Wall EM. A comparison of the pharmacological activity in man of intravenously administered 1368-11368-11368-1, cannabinol, and cannabidiol. Experientia.
 748 1973:29(11):1368-9.
- 749 18. Morgan CJA, Curran HV. Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis. Brit J Psychiat. 2008;192(4):306-7.
- 751 19. Schubart CD, Sommer IEC, van Gastel WA, Goetgebuer RL, Kahn RS, Boks MPM. Cannabis with high cannabidiol content is associated with fewer psychotic experiences. Schizophr Res. 2011;130(1):216-21.
- 753 20. Zuardi AW, Rodrigues JA, Cunha JM. Effects of cannabidiol in animal models predictive of antipsychotic activity. Psychopharmacology. 1991;104(2):260.
- 755 21. Moreira FA, Guimarães FS. Cannabidiol inhibits the hyperlocomotion induced by psychotomimetic drugs in mice. Eur J Pharmacol. 2005;512(2):199-205.
- 22. Long LE, Malone DT, Taylor DA. Cannabidiol reverses MK-801-induced disruption of prepulse inhibition in mice. Neuropsychopharmacol. 2006;31(4):795-803.
- 759 23. Gururajan A, Taylor DA, Malone DT. Cannabidiol and clozapine reverse MK-801-induced deficits in social interaction and hyperactivity in Sprague-Dawley rats. J Psychopharmacol. 2012;26(10):1317-32.
- 761 24. Iseger TA, Bossong MG. A systematic review of the antipsychotic properties of cannabidiol in humans.
 762 Schizophr Res. 2015;162(1-3):153-61.
- 763 25. Burstein S. Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorg Med
 764 Chem. 2015;23(7):1377-85.
- 765 26. Meyer U. Anti-inflammatory signaling in schizophrenia. Brain Behav Immun. 2011;25(8):1507-18.
- 766 27. Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P, Group P. Preferred reporting items for systematic
 767 reviews and meta-analyses: the PRISMA statement. Brit Med J. 2009;339(7716):332-6.
- 28. Hallak JE, Machado-de-Sousa JP, Crippa JAS, Sanches RF, Trzesniak C, Chaves C, et al. Performance of
 schizophrenic patients in the Stroop Color Word Test and electrodermal responsiveness after acute
 administration of cannabidiol (CBD). Rev Bras Psiquiatr. 2010;32(1):56-61.
- 29. Deiana S, Watanabe A, Yamasaki Y, Amada N, Kikuchi T, Stott C, et al. MK-801-induced deficits in social recognition in rats: Reversal by aripiprazole, but not olanzapine, risperidone, or cannabidiol. Behav
 Pharmacol. 2015;26(8):748-65.
- 30. Gomes FV, Llorente R, Del Bel EA, Viveros M-P, López-Gallardo M, Guimarães FS. Decreased glial
 reactivity could be involved in the antipsychotic-like effect of cannabidiol. Schizophr Res. 2015;164(1–
 3):155-63.
- 31. Bevins R, Besheer J. Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat Protoc. 2006;1(3):1306-11.
- 32. Martín-Moreno AM, Reigada D, Ramírez BG, Mechoulam R, Innamorato N, Cuadrado A, et al. Cannabidiol
 and Other Cannabinoids Reduce Microglial Activation In Vitro and In Vivo: Relevance to Alzheimer's
 Disease. Mol Pharmacol. 2011 June 1, 2011;79(6):964-73.
- 782 33. Fagherazzi EV, Schröder N, Garcia VA, Maurmann N, Bervanger T, Halmenschlager LH, et al. Memory783 rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative
 784 disorders. Psychopharmacology. 2012;219(4):1133-40.
- 34. Cheng D, Low JK, Logge W, Garner B, Karl T. Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1ΔE9 mice. Psychopharmacology. 2014;231(15):3009-17.
- 35. Cheng D, Spiro AS, Jenner AM, Garner B, Karl T. Long-term cannabidiol treatment prevents the
 development of social recognition memory deficits in Alzheimer's disease transgenic mice. J Alzheimers
 Dis. 2014;42:1383-96.
- 36. Bettens K, Sleegers K, Van Broeckhoven C. Genetic insights in Alzheimer's disease. Lancet Neurol.
 2013;12(1):92-104.
- 37. Morgan CJA, Schafer G, Freeman TP, Curran HV. Impact of cannabidiol on the acute memory and psychotomimetic effects of smoked cannabis: Naturalistic study. Brit J Psychiat. 2010;197(4):285.

- 38. Morgan CJA, Gardener C, Schafer G, Swan S, Demarchi C, Freeman TP, et al. Sub-chronic impact of
 cannabinoids in street cannabis on cognition, psychotic-like symptoms and psychological well-being.
 Psychol Med. 2012;42(2):391-400.
- 39. Hindocha C, Freeman TP, Schafer G, Gardener C, Das RK, Morgan CJ, et al. Acute effects of delta-9tetrahydrocannabinol, cannabidiol and their combination on facial emotion recognition: a randomised,
 double-blind, placebo-controlled study in cannabis users. Eur Neuropsychopharm. 2015 Mar;25(3):325-34.
- 40. Englund A, Holt D, Feilding A, Walker L, Murray RM, Kapur S, et al. Cannabidiol inhibits THC-elicited
 paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol. 2013;27(1):1927.
- 41. Hayakawa K, Mishima K, Hazekawa M, Sano K, Irie K, Orito K, et al. Cannabidiol potentiates
 pharmacological effects of Δ9-tetrahydrocannabinol via CB1 receptor-dependent mechanism. Brain Res.
 2008;1188:157-64.
- 42. Wright JMJ, Vandewater SA, Taffe MA. Cannabidiol attenuates deficits of visuospatial associative memory
 induced by Δ⁹tetrahydrocannabinol. Brit J Pharmacol. 2013;170(7):1365.
- 43. Roser P, Juckel G, Rentzsch J, Nadulski T, Gallinat J, Stadelmann AM. Effects of acute oral Δ9-tetrahydrocannabinol and standardized cannabis extract on the auditory P300 event-related potential in healthy volunteers. Eur Neuropsychopharm. 2008;18(8):569-77.
- 44. Schoedel KA, Chen N, Hilliard A, White L, Stott C, Russo E, et al. A randomized, double-blind, placebocontrolled, crossover study to evaluate the subjective abuse potential and cognitive effects of nabiximols oromucosal spray in subjects with a history of recreational cannabis use. Hum Psychopharm Clin.
 2011;26(3):224-36.
- 45. Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to determine whether
 whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin Rehabil. 2003;17(1):21-9.
- 817 46. Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, et al.
 818 Opposite Effects of Delta-9-Tetrahydrocannabinol and Cannabidiol on Human Brain Function and
 819 Psychopathology. Neuropsychopharmacol. 2010 Feb;35(3):764-74.
- 47. Lichtman AH, Dimen KR, Martin BR. Systemic or intrahippocampal cannabinoid administration impairs
 spatial memory in rats. Psychopharmacology. 1995;119(3):282.
- 48. Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA. Cannabidiol inhibits
 paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system
 function or chemotherapy efficacy. Brit J Pharmacol. 2014;171(3):636.
- 49. Di Forti M, Morgan C, Dazzan P, Pariante C, Mondelli V, Marques TR, et al. High-potency cannabis and the risk of psychosis. Brit J Psychiat. 2009;195(6):488-91.
- 50. Bornheim LM, Kim KY, Li J, Perotti BY, Benet LZ. Effect of cannabidiol pretreatment on the kinetics of
 tetrahydrocannabinol metabolites in mouse brain. Drug Metab Dispos. 1995;23(8):825-31.
- 51. Huestis MA. Human Cannabinoid Pharmacokinetics. Chem Biodivers. 2007;4(8):1770-804.
- 52. Pazos MR, Cinquina V, Gómez A, Layunta R, Santos M, Fernández-Ruiz J, et al. Cannabidiol
 administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores
 neurobehavioral function. Neuropharmacology. 2012;63(5):776-83.
- 53. Schiavon AP, Soares LM, Bonato JM, Milani H, Guimares FS, de Oliveira RMW. Protective Effects of
 Cannabidiol Against Hippocampal Cell Death and Cognitive Impairment Induced by Bilateral Common
 Carotid Artery Occlusion in Mice. Neurotox Res. 2014 Nov;26(4):307-16.
- 54. Avraham Y, Grigoriadis NC, Poutahidis T, Vorobiev L, Magen I, Ilan Y, et al. Cannabidiol improves brain
 and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice. Brit J
 Pharmacol. 2011;162(7):1650-8.
- 55. Magen I, Avraham Y, Ackerman Z, Vorobiev L, Mechoulam R, Berry EM. Cannabidiol ameliorates cognitive and motor impairments in mice with bile duct ligation. J Hepatol. 2009;51(3):528-34.
- 56. Magen I, Avraham Y, Ackerman Z, Vorobiev L, Mechoulam R, Berry EM. Cannabidiol ameliorates
 cognitive and motor impairments in bile-duct ligated mice via 5-HT_{1A} receptor activation. Brit J Pharmacol.
 2010;159(4):950-7.
- 57. Simen AA, Bordner KA, Martin MP, Moy LA, Barry LC. Cognitive Dysfunction with Aging and the Role
 of Inflammation. Ther Adv Chronic Dis. 2011;2(3):175-95.
- 58. Holden JM, Meyers-Manor JE, Overmier JB, Gahtan E, Sweeney W, Miller H. Lipopolysaccharide-induced
 immune activation impairs attention but has little effect on short-term working memory. Behavioural Brain
 Research. 2008;194(2):138-45.
- 59. Marsland AL, Petersen KL, Sathanoori R, Muldoon MF, Neumann SA, Ryan C, et al. Interleukin-6 covaries
 inversely with cognitive performance among middle-aged community volunteers. Psychosom Med.
 2006;68(6):895-903.

- 60. Cassol-Jr OJ, Zuardi AW, Crippa JAS, Quevedo J, Dal-Pizzol F, Comim CM, et al. Treatment with
 cannabidiol reverses oxidative stress parameters, cognitive impairment and mortality in rats submitted to
 sepsis by cecal ligation and puncture. Brain Res. 2010;1348:128-38.
- 855 61. Barichello T, Ceretta RA, Generoso JS, Moreira AP, Simões LR, Comim CM, et al. Cannabidiol reduces
 856 host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal
 857 meningitis. Eur J Pharmacol. 2012;697(1-3):158-64.
- 858 62. Campos AC, Brant F, Miranda AS, Machado FS, Teixeira AL. Cannabidiol increases survival and promotes
 859 rescue of cognitive function in a murine model of cerebral malaria. Neuroscience. 2015;289:166-80.
- 63. Hoogman M, van de Beek D, Weisfelt M, de Gans J, Schmand B. Cognitive outcome in adults after bacterial
 meningitis. J Neurol Neurosur Ps. 2007 October 1, 2007;78(10):1092-6.
- 862 64. Goff DC, Hill M, Barch D. The treatment of cognitive impairment in schizophrenia. Pharmacol Biochem Be. 2011;99(2):245-53.
- 864 65. Shebl FM, Pinto LA, García-Piñeres A, Lempicki R, Williams M, Harro C, et al. Comparison of mRNA and
 865 protein measures of cytokines following vaccination with HPV-16 L1 virus like particles. Cancer Epidem
 866 Biomar. 2010;19(4):978-81.
- 867 66. Na K-S, Jung H-Y, Kim Y-K. The role of pro-inflammatory cytokines in the neuroinflammation and
 868 neurogenesis of schizophrenia. Prog Neuro-Psychoph. 2014;48:277-86.
- 869 67. Croxford JL, Yamamura T. Cannabinoids and the immune system: Potential for the treatment of
 870 inflammatory diseases? J Neuroimmunol. 2005;166(1):3-18.
- 68. Esposito G, Scuderi C, Valenza M, Togna GI, Latina V, Cipriano M, et al. Cannabidiol reduces Ab-induced
 neuroinflammation and promotes hippocampal neurogenesis through PPAR gamma involvement. PloS one.
 2011;6(12).
- 69. Carrier EJ, Auchampach JA, Hillard CJ. Inhibition of an equilibrative nucleoside transporter by cannabidiol:
 A mechanism of cannabinoid immunosuppression. Proceedings of the National Academy of Sciences of the
 United States of America. 2006;103(20):7895-900.
- 877 70. Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, et al.
 878 Opposite effects of Δ-9-tetrahydrocannabinol and cannabidiol on human brain function and
 879 psychopathology. Neuropsychopharmacol. 2010;35(3):764.
- 71. da Silva VK, Crippa JAS, Schröder N, de Freitas BS, da Silva Dornelles A, Nery LR, et al. Cannabidiol
 Normalizes Caspase 3, Synaptophysin, and Mitochondrial Fission Protein DNM1L Expression Levels in
 Rats with Brain Iron Overload: Implications for Neuroprotection. Mol Neurobiol. 2014;49(1):222-33.
- 72. Liput DJ, Hammell DC, Stinchcomb AL, Nixon K. Transdermal delivery of cannabidiol attenuates binge
 alcohol-induced neurodegeneration in a rodent model of an alcohol use disorder. Pharmacology
 Biochemistry and Behavior. 2013;111:120-7.
- 73. Long LE, Chesworth R, Huang XF, Wong A, Spiro A, McGregor IS, et al. Distinct neurobehavioural effects
 of cannabidiol in transmembrane domain neuregulin 1 mutant mice. PloS one. 2012;7(4).
- 74. Aragona M, Onesti E, Tomassini V, Conte A, Gupta S, Gilio F, et al. Psychopathological and cognitive effects of therapeutic cannabinoids in multiple sclerosis: A double-blind, placebo controlled, crossover study. Clin Neuropharmacol. 2009;32(1):41-7.
- 891 75. Bergamaschi MM, Nardi AE, Martin-Santos R, Hallak JEC, Zuardi AW, Crippa JAS, et al. Cannabidiol
 892 Reduces the Anxiety Induced by Simulated Public Speaking in Treatment-Naïve Social Phobia Patients.
 893 Neuropsychopharmacol. 2011;36(6):1219-26.
- 894 76. Lafuente H, Alvarez FJ, Pazos MR, Alvarez A, Rey-Santano MC, Mielgo V, et al. Cannabidiol Reduces
 895 Brain Damage and Improves Functional Recovery After Acute Hypoxia-Ischemia in Newborn Pigs. Pediatr
 896 Res. 2011;70(3):272-7.
- 77. Winton-Brown TT, Allen P, Bhattacharrya S, Borgwardt SJ, Fusar-Poli P, Crippa JA, et al. Modulation of
 Auditory and Visual Processing by Delta-9-Tetrahydrocannabinol and Cannabidiol: an fMRI Study.
 Neuropsychopharmacol. 2011 Jun;36(7):1340-8.
- 900 78. Juckel G, Roser P, Nadulski T, Stadelmann AM, Gallinat J. Acute effects of Δ9-tetrahydrocannabinol and
 901 standardized cannabis extract on the auditory evoked mismatch negativity. Schizophr Res. 2007;97(1 902 3):109-17.
- 903 79. Niyuhire F, Varvel SA, Martin BR, Lichtman AH. Exposure to marijuana smoke impairs memory retrieval
 904 in mice. J PHARMACOL EXP THER. 2007 Sep;322(3):1067-75.
- 80. Ilan AB, Gevins A, Coleman M, ElSohly MA, de Wit H. Neurophysiological and subjective profile of
 marijuana with varying concentrations of cannabinoids. Behav Pharmacol. 2005 Sep;16(5-6):487-97.
- 81. Wade DT, Makela P, Robson P, House H, Bateman C. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler. 2004;10(4):434-41.
- 910 82. Guy GW, Flint ME. A Single Centre, Placebo-Controlled, Four Period, Crossover, Tolerability Study
- 911 Assessing, Pharmacodynamic Effects, Pharmacokinetic Characteristics and Cognitive Profiles of a Single

912 913 914 915 916 917 918	 Dose of Three Formulations of Cannabis Based Medicine Extracts (CBMEs) (GWPD9901), Plus a Two Period Tolerability Study Comparing Pharmacodynamic Effects and Pharmacokinetic Characteristics of a Single Dose of a Cannabis Based Medicine Extract Given via Two Administration Routes (GWPD9901 EXT). Journal of Cannabis Therapeutics. 2004 2004/01/05;3(3):35-77. 83. Leweke FM, Schneider U, Radwan M, Schmidt E, Emrich HM. Different effects of nabilone and cannabidiol on binocular depth inversion in man. Pharmacology Biochemistry and Behavior. 2000;66(1):175-81.
919	
920	
921	
922	
923	
924	
925	
926	
927	
928	
929	
930	
931	
932	
933	
934	
935	
936	

- 948 Figure 1: Prisma Flow Diagram for systematic research and identification of studies meeting inclusion criteria
- 949 (see methods) for systematic review.

Table 1: Clinical studies investigating the effects of cannabidiol on cognition

Author/Year	Study Type	Sample Population/Size	Intervention	Clinical Test	Cognitive Domain	Effect of CBD	
Wade et al. 2003	Double-blind, randomised, placebo- controlled, cross-over	Multiple sclerosis (n=18), spinal cord injury (n=4), brachial plexus damage (n=1) and amputation (n=1)	THC (2.5 mg), CBD (2.5 mg) or cannabis extract (2.5 mg THC+2.5 mg CBD)	Short Orientation Memory Concentration Test	attention	≈	
Roser et al. 2008	Double-blind, placebo-controlled, cross-over	Healthy volunteers (n=20; 10M, 10F)	THC (10 mg), cannabis extract (10 mg THC+5.4 mg CBD) or placebo	Choice Reaction Task	processing speed, attention	~	
	Double-blind			Verbal memory task	verbal memory		
Bhattacharyya et al. 2010	randomised, placebo-	Healthy male volunteers (n=15)	THC (10 mg), CBD (600 mg) or placebo	Viewing fearful faces task	social recognition	≈	
0.000	controlled, cross-over		P.M.C.C.	Response inhibition (Go No-Go)	executive function		
Hallak et al. 2010	Double-blind, placebo-controlled	Schizophrenia outpatients (n=28; 18M, 10F)	CBD (300 mg or 600 mg) vs placebo	Stroop Word Colour	attention	~	
		Cannabia years (n=124) divided into				DFS	AIS
Morgan et al. 2010	Naturalistic study	low (0.08%) vs high (4.61%) CBD	Tested in DFS and AIS (with participant's chosen cannabis)	Prose Recall	verbal memory	≈	↑
2010	r additione study	groups		Source Memory	episodic memory	~	~
			National (10 Prov TUC) 10 ma	Verbal category & fluency	executive control	≈	~
Schoedel et al	Randomised double-	Recreational cannabis users (n-23.	CBD, 21.6 mg THC+20 mg CBD and 43.2 mg THC+40 mg CBD	Choice Reaction Time	processing speed	≈	
2011	blind, placebo-	19M. 4F		Divided Attention test	attention	≈	
	controlled, cross-over	. ,	or dronabinol (20 or 40 mg THC)	Short-Term Memory test	working memory	≈	
		Cannabis users (n-120: 89M 31E)	Tested in DES hair samples	Prose Recall	verbal memory	~	
Morgan et al.	Naturalistic study	divided into recreational (n=54) or	analysed for cannabinoid content	Recognition memory	recognition memory	↑	
2012		daily users (n=66)	(CBD vs. no CBD)	Source Memory	episodic memory	≈	
				HVLTR	verbal learning and memory	↑	
Englund at al	Randomised, double-	Haalthu ualumtaansi CBD (n=22) ua	Pre-treatment with 600 mg CBD	Symbol Coding	working memory	~	
2013	blind, placebo-	placebo (n=26)	or placebo prior to THC	NAB mazes	executive function	≈	
	controlled		chanenge (1.5 mg)	Digit Span Forward	working memory	≈	
				Digit Reverse	working memory	≈	
Hindocha et al. 2015	Randomised, double- blind, placebo- controlled, cross-over	Cannabis users (n=48; 34M, 14F), divided into light (n=24) and heavy (n=24) users	Δ^9 -THC (8 mg), CBD (16 mg), Δ^9 -THC+CBD (8 mg +16 mg) or placebo	Emotional processing task	social recognition	$^{\uparrow \Delta^9}$ -THC+CBD vs. ↑ CBD vs. placebo	Δ ⁹ -THC

Abbreviations: n - number; M - male; F - female; CBD - cannabidiol; THC - tetrahydrocannabinol; HVLTR - Hopkins Verbal Learning Task Revised; DFS - drug-free state; AIS - acute intoxication state; IR - immediate recall; DR - delayed recall; NAB - Neuropsychological Assessment Battery; ' \uparrow ' - significant improvement in cognition with CBD administration; ' \approx ' - no change in cognition with CBD administration; ' \pm ' - significant impairment in cognition with CBD administration

Table 2: Preclinical studies investigating the effects of cannabidiol on cognitive function

						CBD dose (mg/kg)											
Author/Year	Sex	Strain/Species	Experimental Paradigm	Behavioural test	Cognitive domain	0.5	1.0	2.0	2.5	3.0	5.0	10	12	20	30	50	60
Lichtman et al. 1995	М	Sprague- Dawley rats	Healthy rats administered cannabinoids (WIN-55, 212-2, CP-55, 940, anandamide, CBD)	Radial arm maze	Spatial	1		×									
Hakawaya et al 2008	М	ddY mice	Δ^9 -THC challenge (1 mg/kg)	Eight-arm maze	Spatial					ĸ		~				Ļ	
Magen et al. 2009	F	Sabra mice	Hepatic encephalopathy via BDL	Eight-arm maze	Spatial						ſ						
				T-maze	Working						ſ						
Magen et al. 2010	F	Sabra mice	Hepatic encephalopathy via BDL	Eight-arm maze	Spatial						ſ						
Cassol-Jr et al. 2010	М	Wistar rats	Sepsis via CLP	Inhibitory avoidance	Associative				ſ		ſ	Ť					
Avraham et al. 2011	F	Sabra mice	Hepatic encephalopathy via TAA (200 mg/kg)	Eight-arm maze	Spatial						¢						
Martin-Moreno et al. 2011	F/M	C57Bl/6 mice	$A\beta$ intraventricular injection AD model	MWM	Spatial									ſ			
Barichello et al. 2012	М	Wistar rats	Meningitis model	Inhibitory avoidance	Associative				æ		~	Î					
Fagherazzi et al. 2012	М	Wistar rats	AD via iron overload (30 Acute	NOR	Recognition						~	ſ					
			Chronic								ſ	ſ					
Pazos et al. 2012	F/M	Wistar rats	Hypoxic ischaemic injury via electrocoagulation	NOR	Recognition		ſ										
Wright et al. 2013	М	Rhesus monkey	Δ^9 -THC challenge (0.5 mg/kg)	vsPAL	Declarative	Ŷ											
				SOSS	Spatial	\approx											

				RTT	Procedural	~					
Cheng et al. 2014	М	AβPPxPSI mice	AβPPxPSI double transgenic AD model	NOR	Recognition				1		
				Social Preference	Social recognition				1		
				Fear Conditioning	Associative				≈		
Cheng et al. 2014	М	AβPPxPSI	AβPPxPSI double transgenic AD model	Social Preference	Social recognition				1		
Schiavon et al. 2014	М	Swiss mice	Hypoxic ischaemic injury via BCCAO	MWM	Spatial learning		↑	¢		1	
Ward et al 2014	F	C57Bl/6 mice	Healthy rats	Autoshaping task	Associative	*	~		×		
Campos et al. 2015	F	C57Bl/6 mice	CM via PbA + antimalarial Artesunate	NOR	Recognition					1	
			(52mg/kg)	MWM	Spatial					1	
Deiana et al. 2015	М	Wistar rats	MK-801 (0.08 mg/kg) model of schizophrenia	Social Preference	Social recognition		~		≈	~	
Gomes et al. 2015	М	C57Bl/6 mice	MK-801 (1 mg/kg) model of schizophrenia	NOR	Recognition					~	¢

Abbreviations: F - female; BDL - bile duct ligation; CBD - cannabidiol; M - male; CLP - cecal ligation and puncture; TAA - thioacetamide; AD - Alzheimer's disease; MWM - Morris Water Maze; $NOR - novel object recognition test; <math>\Delta^9$ -THC - Δ^9 -tetrahydrocannabinol; vsPAL - visuospatial paired associate learning task; SOSS - self-ordered spatial search task; RTT - rotating turntables task; BCCAO - bilateral common carotid artery occlusion; PAC - paclitaxel; CM - cerebral malaria; PbA - Plasmodium berghei-ANKA; ' \uparrow ' - significant improvement in cognition with CBD administration; ' \approx ' - no change in cognition with CBD administration

Supplementary Table	1: Characteristics of studies exclude	d from the systematic review
Suppremental ; 1 uore	1. Characteristics of staates cheraac	

Author/Year	Journal of publication	Database	Type of study	Study design	Reason for exclusion
da Silva et al.	Molecular Neurobiology	Web of	Experimental rat model	Chronic CBD administration for 14 days to rats subjected to neonatal iron	No behavioural tests were performed
2014 [71]		Science	(male Wistar rats)	overload as a model of neurodegenerative disorders. Western blot and real-time	to assess cognition.
				PCR analysis of brain proteins associated with mitochondrial fusion and fission	
				mechanisms.	
Liput et al.	Pharmacology Biochemistry	Scopus	Experimental rat model	Acute CBD intervention via transdermal delivery vs. i.p. in rats submitted to	No behavioural tests were performed
2013 [72]	and Behaviour		(male Sprague-Dawley	alcohol-induced neurodegeneration. Assessed neuron degeneration via Fluoro-	to assess cognition.
			rats)	Jade B staining methods.	
Long et al.	PLoS ONE	Scopus	Experimental mouse model	Acute and long-term CBD intervention (dose) in a Nrg1 HET mouse model of	No behavioural tests were performed
2012 [73]			(female C57Bl/6 mice)	schizophrenia	to assess cognition (data on NORT
					testing was not reported).
Aragona et	Clinical Neuropharmacology	Scopus,	Double-blind, randomized,	Intervention with cannabis extract Sativex (1:1 ratio of Δ^9 -THC: CBD) in	No groups to control for Δ^9 -THC or
al. 2011 [74]		Medline	placebo-controlled, parallel	cannabis-naïve MS patients (n=17). Assessed on PASAT (measures attention	CBD effects alone (only Sativex vs.
			group cross-over trial	and information processing) and self-reported measures of symptoms, quality of	placebo).
				life, anxiety and fatigue.	
Bergamaschi	Neuropsychopharmacology	Scopus,	Double-blind, placebo-	Drug-naïve Social Anxiety Disorder patients received either CBD (600mg) or	No behavioural tests were performed
et al. 2011		Medline	controlled	placebo 1.5h prior to the SPST, vs. healthy controls (no medication). Assessed	to assess cognition.
[75]				physiological measures and subjective scores on the VMAS and SSPS-N.	
Lafuente et	Paediatric Research	Scopus	Experimental newborn	CBD intervention (0.1 mg/kg) 15 and 240 min post-HI induction in newborn	No behavioural tests were performed
al.2011 [76]			piglet model	piglets. Assessed neurophysiological and neurobehavioral scores and performed	to assess cognition.
				histological and biochemical analyses.	
Winton-	Neuropsychopharmacology	Web of	Double-blind, pseudo-	Acute intervention with Δ^9 -THC (10 mg), CBD (600 mg) or placebo to healthy	No behavioural tests were performed
Brown et al.		Science	randomized, cross-over	volunteers (n=14). Assessed cannabinoid blood levels, physiological	to assess cognition.
2011 [77]			design	parameters, psychopathology, sensory stimulation task.	
Juckel et al.	Schizophrenia Research	Scopus,	Prospective, double-blind,	Intervention with Δ^9 -THC alone or standardised cannabis extract (Δ^9 -THC +	No behavioural tests were performed
2007 [78]		Medline	placebo-controlled, cross-	CBD) in healthy volunteers (n=22) and assessed effects on MMN amplitudes.	to assess cognition.
			over		
Niyuhire et	Journal of Pharmacology and	Web of	Experimental mouse model	Intervention with marijuana (50, 100 or 200 mg), Δ^9 -THC (1, 3 or 10 mg/kg) or	Did not use standardised cannabis
al. 2007 [79]	Experimental Therapeutics	Science	(male C57BL/6 mice)	placebo and tested in the Morris water maze (spatial learning and memory).	extract, level of CBD unknown.

	Ilan et al.	Behavioural Pharmacology	Scopus.	Double-blind, placebo-	Intervention with marijuana cigarettes containing Λ^9 -THC (high or low) with	Use of CBC in paradigm without a
	2005 [80]		Web of	controlled mixed between	CBC (high or low) and CBD (high or low) in healthy cannabis users (n=23)	CBD only group $-$ cannot determine if
	2003 [00]		C .:	end within white to design		end only group cannot determine in
			Science	and within-subjects design	Assessed physiological measures (blood pressure, neart rate), cognitive test	effects are due to CBD.
					battery (word presentation, working memory and word recognition tasks), EEG	
					recording.	
	Wade et al.	Multiple Sclerosis	Scopus,	Multi-center, double-blind,	Intervention with CMBE: Δ^9 -THC+CBD (ratio of 1:1, 2.5 – 120mg, daily) in	No groups to control for Δ^9 -THC or
	2004 [81]		Web of	randomised, placebo-	MS outpatients (n=160). Recorded VAS of symptoms, disability, mood,	CBD effects alone (only Sativex vs.
			Science,	controlled, parallel group	cognition, sleep and fatigue.	placebo).
		Medline	trial			
	Guy et al.	Journal of Cannabis	Scopus	Partially randomised,	Intervention with whole-plant extracts of Δ^9 -THC, CBD, Δ^9 -THC: CBD (1:1	No behavioural tests were performed
	2003 [82]	Therapeutics		placebo-controlled, cross-	ratio) and placebo to assess tolerability of sublingual drops, sublingual aerosol	to assess cognition.
		over trial	or inhalation delivery methods to healthy subjects (n=6). Assessed			
				pharmacokinetics and self-reported symptoms, well-being, intoxication scores,		
					mood and cognition, and adverse event scores.	
	Leweke et al.	Pharmacology Biochemistry	Scopus,	Double-blind, crossover	Intervention with nabilone (1 mg) and CBD (200 mg) on binocular depth	No behavioural tests were performed
	2000 [83]	and Behaviour	Medline	trial	inversion in male human volunteers (n=9). Assessed subjective measures of	to assess cognition.
					mood, anxiety and vividness of imagery.	
			1			