116 research outputs found

    Hepatic Energy Metabolism under the Local Control of the Thyroid Hormone System

    Get PDF
    The energy homeostasis of the organism is orchestrated by a complex interplay of energy substrate shuttling, breakdown, storage, and distribution. Many of these processes are interconnected via the liver. Thyroid hormones (TH) are well known to provide signals for the regulation of energy homeostasis through direct gene regulation via their nuclear receptors acting as transcription factors. In this comprehensive review, we summarize the effects of nutritional intervention like fasting and diets on the TH system. In parallel, we detail direct effects of TH in liver metabolic pathways with regards to glucose, lipid, and cholesterol metabolism. This overview on hepatic effects of TH provides the basis for understanding the complex regulatory network and its translational potential with regards to currently discussed treatment options of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) involving TH mimetics

    α1A-Adrenergic Receptor-Directed Autoimmunity Induces Left Ventricular Damage and Diastolic Dysfunction in Rats

    Get PDF
    BACKGROUND: Agonistic autoantibodies to the alpha(1)-adrenergic receptor occur in nearly half of patients with refractory hypertension; however, their relevance is uncertain. METHODS/PRINCIPAL FINDINGS: We immunized Lewis rats with the second extracellular-loop peptides of the human alpha(1A)-adrenergic receptor and maintained them for one year. Alpha(1A)-adrenergic antibodies (alpha(1A)-AR-AB) were monitored with a neonatal cardiomyocyte contraction assay by ELISA, and by ERK1/2 phosphorylation in human alpha(1A)-adrenergic receptor transfected Chinese hamster ovary cells. The rats were followed with radiotelemetric blood pressure measurements and echocardiography. At 12 months, the left ventricles of immunized rats had greater wall thickness than control rats. The fractional shortening and dp/dt(max) demonstrated preserved systolic function. A decreased E/A ratio in immunized rats indicated a diastolic dysfunction. Invasive hemodynamics revealed increased left ventricular end-diastolic pressures and decreased dp/dt(min). Mean diameter of cardiomyocytes showed hypertrophy in immunized rats. Long-term blood pressure values and heart rates were not different. Genes encoding sarcomeric proteins, collagens, extracellular matrix proteins, calcium regulating proteins, and proteins of energy metabolism in immunized rat hearts were upregulated, compared to controls. Furthermore, fibrosis was present in immunized hearts, but not in control hearts. A subset of immunized and control rats was infused with angiotensin (Ang) II. The stressor raised blood pressure to a greater degree and led to more cardiac fibrosis in immunized, than in control rats. CONCLUSIONS/SIGNIFICANCE: We show that alpha(1A)-AR-AB cause diastolic dysfunction independent of hypertension, and can increase the sensitivity to Ang II. We suggest that alpha(1A)-AR-AB could contribute to cardiovascular endorgan damage

    Increased Cell-Free DNA Plasma Concentration Following Liver Transplantation Is Linked to Portal Hepatitis and Inferior Survival

    Get PDF
    Donor organ quality is crucial for transplant survival and long-term survival of patients after liver transplantation. Besides bacterial and viral infections, endogenous damage-associated molecular patterns (DAMPs) can stimulate immune responses. Cell-free DNA (cfDNA) is one such DAMP that exhibits highly proinflammatory effects via DNA sensors. Herein, we measured cfDNA after liver transplantation and found elevated levels when organs from resuscitated donors were transplanted. High levels of cfDNA were associated with high C-reactive protein, leukocytosis as well as granulocytosis in the recipient. In addition to increased systemic immune responses, portal hepatitis was observed, which was associated with increased interface activity and a higher numbers of infiltrating neutrophils and eosinophils in the graft. In fact, the cfDNA was an independent significant factor in multivariate analysis and increased concentration of cfDNA was associated with inferior 1-year survival. Moreover, cfDNA levels were found to be decreased significantly during the postoperative course when patients underwent continuous veno-venous haemofiltration. In conclusion, patients receiving livers from resuscitated donors were characterised by high postoperative cfDNA levels. Those patients showed pronounced portal hepatitis and systemic inflammatory responses in the short term leading to a high mortality. Further studies are needed to evaluate the clinical relevance of cfDNA clearance by haemoadsorption and haemofiltration in vitro and in vivo

    Science journalism and a multi-directional science-policy-society dialogue are needed to foster public awareness for biodiversity and its conservation

    Get PDF
    Biodiversity is the manifestation of life on our planet and provides manifold benefits for humans. Yet we destroy ecosystems and drive species to extinction. We submit that anthropogenic biodiversity loss does not yet receive sufficient public attention, although biodiversity conservation and its sustainable use are key to mitigate global crises. Effective communication of biodiversity-related knowledge with diverse audiences is therefore crucial and should contribute to ensuring that evidence guides environmental decision-making. In this context, it is essential to stimulate multi-directional dialogues between science, policy, and society. Here, we suggest Dos and Don’ts that can guide science communication for scientists working in biodiversity research and beyond. Moreover, we emphasize the role of science journalism and other institutions specialized in science communication in critically mediating the complexity of scientific knowledge

    Immunoadsorption for Treatment of Patients with Suspected Alzheimer Dementia and Agonistic Autoantibodies against Alpha1a-Adrenoceptor—Rationale and Design of the IMAD Pilot Study

    Get PDF
    Background: agonistic autoantibodies (agAABs) against G protein-coupled receptors (GPCR) have been linked to cardiovascular disease. In dementia patients, GPCR-agAABs against the α1- and ß2-adrenoceptors (α1AR- and ß2AR) were found at a prevalence of 50%. Elimination of agAABs by immunoadsorption (IA) was successfully applied in cardiovascular disease. The IMAD trial (Efficacy of immunoadsorption for treatment of persons with Alzheimer dementia and agonistic autoantibodies against alpha1A-adrenoceptor) investigates whether the removal of α1AR-AABs by a 5-day IA procedure has a positive effect (improvement or non-deterioration) on changes of hemodynamic, cognitive, vascular and metabolic parameters in patients with suspected Alzheimer’s clinical syndrome within a one-year follow-up period. Methods: the IMAD trial is designed as an exploratory monocentric interventional trial corresponding to a proof-of-concept phase-IIa study. If cognition capacity of eligible patients scores 19–26 in the Mini Mental State Examination (MMSE), patients are tested for the presence of agAABs by an enzyme-linked immunosorbent assay (ELISA)-based method, followed by a bioassay-based confirmation test, further screening and treatment with IA and intravenous immunoglobulin G (IgG) replacement. We aim to include 15 patients with IA/IgG and to complete follow-up data from at least 12 patients. The primary outcome parameter of the study is uncorrected mean cerebral perfusion measured in mL/min/100 gr of brain tissue determined by magnetic resonance imaging with arterial spin labeling after 12 months. Conclusion: IMAD is an important pilot study that will analyze whether the removal of α1AR-agAABs by immunoadsorption in α1AR-agAAB-positive patients with suspected Alzheimer’s clinical syndrome may slow the progression of dementia and/or may improve vascular functional parameters

    Biosensor Applications in the Field of Antibiotic Research—A Review of Recent Developments

    Get PDF
    Antibacterials are among of the most important medications used in health care. However, their efficacy is increasingly impeded by a tremendous and globally spread bacterial resistance phenomenon. This bacterial resistance is accelerated by inadequate application of antibacterial drugs in humans, the widespread veterinary use of antibacterials, and antibacterial occurrence in the environment and food. Further, there is a lack of development of innovative novel drugs. Therefore, the search for novel antibacterials has to be intensified and the spread of antibacterials in the environment has to be restricted. Due to the fundamental progress in biosensor development and promising applications in the antibiotic field, this review gives for the first time an overview on the use and prospects of biosensor applications in that area. A number of reports have applied biosensors of different design and techniques to search for antibacterials in environmental and foodstuff matrices. These studies are discussed with respect to the analytical values and compared to conventional techniques. Furthermore, biosensor applications to elucidate the mode of action of antimicrobial drugs in vitro have been described. These studies were critically introduced referring to the informational value of those simulations. In summary, biosensors will be illustrated as an innovative and promising, although not yet comprehensively applied, technique in the antibacterial field

    The experimental power of FR900359 to study Gq-regulated biological processes.

    Get PDF
    Despite the discovery of heterotrimeric αβγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq

    Key Physiological Parameters Dictate Triggering of Activity-Dependent Bulk Endocytosis in Hippocampal Synapses

    Get PDF
    To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV) retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity

    RBR ligase–mediated ubiquitin transfer: a tale with many twists and turns

    Get PDF
    RBR ligases are an enigmatic class of E3 ubiquitin ligases that combine properties of RING and HECT-type E3s and undergo multilevel regulation through autoinhibition, post-translational modifications, multimerization and interaction with binding partners. Here, we summarize recent progress in RBR structures and function, which has uncovered commonalities in the mechanisms by which different family members transfer ubiquitin through a multistep process. However, these studies have also highlighted clear differences in the activity of different family members, suggesting that each RBR ligase has evolved specific properties to fit the biological process it regulates
    • …
    corecore