82 research outputs found

    Leishmania donovani populations in Eastern Sudan: temporal structuring and a link between human and canine transmission.

    Get PDF
    BACKGROUND: Visceral leishmaniasis (VL), caused by the members of the Leishmania donovani complex, has been responsible for devastating VL epidemics in the Sudan. Multilocus microsatellite and sequence typing studies can provide valuable insights into the molecular epidemiology of leishmaniasis, when applied at local scales. Here we present population genetic data for a large panel of strains and clones collected in endemic Sudan between 1993 and 2001. METHODS: Genetic diversity was evaluated at fourteen microsatellite markers and eleven nuclear sequence loci across 124 strains and clones. RESULTS: Microsatellite data defined six genetic subpopulations with which the nuclear sequence data were broadly congruent. Pairwise estimates of FST (microsatellite) and KST (sequence) indicated small but significant shifts among the allelic repertoires of circulating strains year on year. Furthermore, we noted the co-occurrence of human and canine L. donovani strains in three of the six clusters defined. Finally, we identified widespread deficit in heterozygosity in all four years tested but strong deviation from inter-locus linkage equilibrium in two years. CONCLUSIONS: Significant genetic diversity is present among L. donovani in Sudan, and minor population structuring between years is characteristic of entrenched, endemic disease transmission. Seasonality in vector abundance and transmission may, to an extent, explain the shallow temporal clines in allelic frequency that we observed. Genetically similar canine and human strains highlight the role of dogs as important local reservoirs of visceral leishmaniasis

    Leishmania siamensis als Erreger von autochthoner kutaner Leishmaniose bei Pferden in Deutschland - eine neue Infektionskrankheit in Mitteleuropa?

    Get PDF
    Aus mitteleuropäischer Sicht ist die durch Parasiten verursachte und von Sandmücken übertragene Leishmaniose eine in Ländern tropischer und subtropischer Regionen auftretende Infektionskrankheit. In zunehmendem Maße werden jedoch autochthone Fälle in Mitteleuropa, insbesondere in Süddeutschland, verzeichnet. Dies ist vermutlich auf die globale Erwärmung und die Ausdehnung des Verbreitungsgebietes der Sandmücken nach Norden zurückzuführen. Die vorliegende Arbeit befasst sich mit der Identifizierung und phylogenetischen Charakterisierung der Erreger dieser Fälle. Dazu wurden verschiedene Marker im Leishmaniengenom sequenziert und mit bekannten Arten verglichen. Die untersuchte DNA stammte von autochthonen kutanen Leishmaniosen bei Pferden und einem Rind, die in den letzten zehn Jahren in Deutschland und der Schweiz auftraten. Aufgrund identischer Sequenzen konnten die Parasiten als L. siamensis identifiziert bzw. verifiziert werden, eine erst im Jahr 2008 neu beschriebene Art, die in Thailand humane viszerale Leishmaniose verursacht. Die phylogenetischen Analysen zeigten die Ähnlichkeit von L. siamensis mit weiteren bisher nicht identifizierten Stämmen aus Martinique und Ghana, die kutane Leishmaniose bei Menschen verursachen. Um die Frage zu beantworten, ob sich die Leishmaniose zu einer in Mitteleuropa endemischen zoonotischen Krankheit entwickeln könnte, müssen weitere Studien über kompatible Vektoren, mögliche Reservoire und zur Virulenz durchgeführt werden

    temporal structuring and a link between human and canine transmission

    Get PDF
    Background Visceral leishmaniasis (VL), caused by the members of the Leishmania donovani complex, has been responsible for devastating VL epidemics in the Sudan. Multilocus microsatellite and sequence typing studies can provide valuable insights into the molecular epidemiology of leishmaniasis, when applied at local scales. Here we present population genetic data for a large panel of strains and clones collected in endemic Sudan between 1993 and 2001. Methods Genetic diversity was evaluated at fourteen microsatellite markers and eleven nuclear sequence loci across 124 strains and clones. Results Microsatellite data defined six genetic subpopulations with which the nuclear sequence data were broadly congruent. Pairwise estimates of FST (microsatellite) and KST (sequence) indicated small but significant shifts among the allelic repertoires of circulating strains year on year. Furthermore, we noted the co-occurrence of human and canine L. donovani strains in three of the six clusters defined. Finally, we identified widespread deficit in heterozygosity in all four years tested but strong deviation from inter-locus linkage equilibrium in two years. Conclusions Significant genetic diversity is present among L. donovani in Sudan, and minor population structuring between years is characteristic of entrenched, endemic disease transmission. Seasonality in vector abundance and transmission may, to an extent, explain the shallow temporal clines in allelic frequency that we observed. Genetically similar canine and human strains highlight the role of dogs as important local reservoirs of visceral leishmaniasis

    Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy.

    No full text
    Leishmaniasis is a geographically widespread severe disease, with an increasing incidence of two million cases per year and 350 million people from 88 countries at risk. The causative agents are species of Leishmania, a protozoan flagellate. Visceral leishmaniasis, the most severe form of the disease, lethal if untreated, is caused by species of the Leishmania donovani complex. These species are morphologically indistinguishable but have been identified by molecular methods, predominantly multilocus enzyme electrophoresis. We have conducted a multifactorial genetic analysis that includes DNA sequences of protein-coding genes as well as noncoding segments, microsatellites, restriction-fragment length polymorphisms, and randomly amplified polymorphic DNAs, for a total of approximately 18,000 characters for each of 25 geographically representative strains. Genotype is strongly correlated with geographical (continental) origin, but not with current taxonomy or clinical outcome. We propose a new taxonomy, in which Leishmania infantum and L. donovani are the only recognized species of the L. donovani complex, and we present an evolutionary hypothesis for the origin and dispersal of the species. The genus Leishmania may have originated in South America, but diversified after migration into Asia. L. donovani and L. infantum diverged approximately 1 Mya, with further divergence of infraspecific genetic groups between 0.4 and 0.8 Mya. The prevailing mode of reproduction is clonal, but there is evidence of genetic exchange between strains, particularly in Africa

    Identification of geographically distributed sub-populations of Leishmania (Leishmania) major by microsatellite analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Leishmania </it>(<it>Leishmania</it>) <it>major</it>, one of the agents causing cutaneous leishmaniasis (CL) in humans, is widely distributed in the Old World where different species of wild rodent and phlebotomine sand fly serve as animal reservoir hosts and vectors, respectively. Despite this, strains of <it>L. (L.) major </it>isolated from many different sources over many years have proved to be relatively uniform. To investigate the population structure of the species highly polymorphic microsatellite markers were employed for greater discrimination among it's otherwise closely related strains, an approach applied successfully to other species of <it>Leishmania</it>.</p> <p>Results</p> <p>Multilocus Microsatellite Typing (MLMT) based on 10 different microsatellite markers was applied to 106 strains of <it>L. (L.) major </it>from different regions where it is endemic. On applying a Bayesian model-based approach, three main populations were identified, corresponding to three separate geographical regions: Central Asia (CA); the Middle East (ME); and Africa (AF). This was congruent with phylogenetic reconstructions based on genetic distances. Re-analysis separated each of the populations into two sub-populations. The two African sub-populations did not correlate well with strains' geographical origin. Strains falling into the sub-populations CA and ME did mostly group according to their place of isolation although some anomalies were seen, probably, owing to human migration.</p> <p>Conclusion</p> <p>The model- and distance-based analyses of the microsatellite data exposed three main populations of <it>L. (L.) major</it>, Central Asia, the Middle East and Africa, each of which separated into two sub-populations. This probably correlates with the different species of rodent host.</p

    Differentiation and Gene Flow among European Populations of Leishmania infantum MON-1

    Get PDF
    Visceral leishmaniasis is caused by protozoan parasites of the genus Leishmania. This disease is a public health problem in countries bordering the Mediterranean, in China, and South America. Until now, isoenzyme analysis, a method with several advantages but also some limitations, is the gold standard for typing the causative agent L. infantum. We have developed a new method based on hypervariable DNA markers, the microsatellites. Its higher discriminatory power, genotype-based analysis, the possibility to use biological material instead of parasite cultures, and the fast analysis are the major improvements. We could demonstrate for the first time that there exist different geographically determined populations within the predominant zymodeme of L. infantum, which has important epidemiological implications. We also tested for relationships between genotype and clinical picture and/or host background. Leishmania is considered to reproduce mainly clonally; however, we found some indication for recombination in our study. Our work constitutes a solid basis for further population and epidemiological studies of L. infantum by completing the existing microsatellite database by analysing strains from other endemic foci

    Population structure and evidence for both clonality and recombination among Brazilian strains of the subgenus Leishmania (Viannia).

    Get PDF
    BACKGROUND/OBJECTIVES: Parasites of the subgenus Leishmania (Viannia) cause varying clinical symptoms ranging from cutaneous leishmaniases (CL) with single or few lesions, disseminated CL (DL) with multiple lesions to disfiguring forms of mucocutaneous leishmaniasis (MCL). In this population genetics study, 37 strains of L. (V.) guyanensis, 63 of L. (V.) braziliensis, four of L. (V.) shawi, six of L. (V.) lainsoni, seven of L. (V.) naiffi, one each of L. (V.) utingensis and L. (V.) lindenbergi, and one L. (V.) lainsoni/L. naiffi hybrid from different endemic foci in Brazil were examined for variation at 15 hyper-variable microsatellite markers. METHODOLOGY/PRINCIPAL FINDINGS: The multilocus microsatellite profiles obtained for the 120 strains were analysed using both model- and distance-based methods. Significant genetic diversity was observed for all L. (Viannia) strains studied. The two cluster analysis approaches identified two principal genetic groups or populations, one consisting of strains of L. (V.) guyanensis from the Amazon region and the other of strains of L. (V.) braziliensis isolated along the Atlantic coast of Brazil. A third group comprised a heterogeneous assembly of species, including other strains of L. braziliensis isolated from the north of Brazil, which were extremely polymorphic. The latter strains seemed to be more closely related to those of L. (V.) shawi, L. (V.) naiffi, and L. (V.) lainsoni, also isolated in northern Brazilian foci. The MLMT approach identified an epidemic clone consisting of 13 strains of L. braziliensis from Minas Gerais, but evidence for recombination was obtained for the populations of L. (V.) braziliensis from the Atlantic coast and for L. (V.) guyanensis. CONCLUSIONS/SIGNIFICANCE: Different levels of recombination versus clonality seem to occur within the subgenus L. (Viannia). Though clearly departing from panmixia, sporadic, but long-term sustained recombination might explain the tremendous genetic diversity and limited population structure found for such L. (Viannia) strains

    Multilocus Microsatellite Typing (MLMT) of Strains from Turkey and Cyprus Reveals a Novel Monophyletic L. donovani Sensu Lato Group

    Get PDF
    In eastern Mediterranean, leishmaniasis represents a major public health problem with considerable impact on morbidity and potential to spread. Cutaneous leishmaniasis (CL) caused by L. major or L. tropica accounts for most cases in this region although visceral leishmaniasis (VL) caused by L. infantum is also common. New foci of human CL caused by L. donovani complex strains were recently described in Cyprus and Turkey. Herein we analyzed Turkish strains from human CL foci in Çukurova region (north of Cyprus) and a human VL case in Kuşadasi. These were compared to Cypriot strains that were previously typed by Multilocus Enzyme Electrophoresis (MLEE) as L. donovani MON-37. Nevertheless, they were found genetically distinct from MON-37 strains of other regions and therefore their origin remained enigmatic. A population study was performed by Multilocus Microsatellite Typing (MLMT) and the profile of the Turkish strains was compared to previously analyzed L. donovani complex strains. Our results revealed close genetic relationship between Turkish and Cypriot strains, which form a genetically distinct L. infantum monophyletic group, suggesting that Cypriot strains may originate from Turkey. Our analysis indicates that the epidemiology of leishmaniasis in this region is more complicated than originally thought

    Comparative Microsatellite Typing of New World Leishmania infantum Reveals Low Heterogeneity among Populations and Its Recent Old World Origin

    Get PDF
    Leishmania infantum (syn. L. chagasi) is the causative agent of visceral leishmaniasis (VL) in the New World (NW) with endemic regions extending from southern USA to northern Argentina. The two hypotheses about the origin of VL in the NW suggest (1) recent importation of L. infantum from the Old World (OW), or (2) an indigenous origin and a distinct taxonomic rank for the NW parasite. Multilocus microsatellite typing was applied in a survey of 98 L. infantum isolates from different NW foci. The microsatellite profiles obtained were compared to those of 308 L. infantum and 20 L. donovani strains from OW countries previously assigned to well-defined populations. Two main populations were identified for both NW and OW L. infantum. Most of the NW strains belonged to population 1, which corresponded to the OW MON-1 population. However, the NW population was much more homogeneous. A second, more heterogeneous, population comprised most Caribbean strains and corresponded to the OW non-MON-1 population. All Brazilian L. infantum strains belonged to population 1, although they represented 61% of the sample and originated from 9 states. Population analysis including the OW L. infantum populations indicated that the NW strains were more similar to MON-1 and non-MON-1 sub-populations of L. infantum from southwest Europe, than to any other OW sub-population. Moreover, similarity between NW and Southwest European L. infantum was higher than between OW L. infantum from distinct parts of the Mediterranean region, Middle East and Central Asia. No correlation was found between NW L. infantum genotypes and clinical picture or host background. This study represents the first continent-wide analysis of NW L. infantum population structure. It confirmed that the agent of VL in the NW is L. infantum and that the parasite has been recently imported multiple times to the NW from southwest Europe
    • …
    corecore