34 research outputs found

    Adenosine deaminase production by an endophytic bacterium (Lysinibacillus sp.) from Avicennia marina

    Get PDF
    The present study was carried out with the following objectives: (1) to isolate the endophytic bacilli strains from the leaves of mangrove plant Avicennia marina, (2) to screen the potential strains for the production of adenosine deaminase, (3) to statistically optimize the factors that influence the enzyme activity in the potent strain, and (4) to identify the potent strain using 16S rRNA sequence and construct its phylogenetic tree. The bacterial strains isolated from the fresh leaves of a mangrove A. marina were assessed for adenosine deaminase activity by plating method. Optimization of reaction process was carried out using response surface methodology of central composite design. The potent strain was identified based on 16S rRNA sequencing and phylogeny. Of five endophytic strains, EMLK1 showed a significant deaminase activity over other four strains. The conditions for maximum activity of the isolated adenosine deaminase are described. The potent strain EMLK1 was identified as Lysinibacillus sp. (JQ710723) being the first report as a mangrove endophyte. Mangrove-derived endophytic bacillus strain Lysinibacillus sp. EMLK1 is proved to be a promising source for the production of adenosine deaminase and this enzyme deserves further studies for purification and its application in disease diagnosis

    Seasonal variation of atmospheric organochlorine pesticides and polybrominated diphenyl ethers in Parangipettai, Tamil Nadu, India:Implication for atmospheric transport

    Get PDF
    During 1990s, residues of several persistent organic pollutants (POPs) in different environmental matrices have been reported from a tropical coastal site, Parangipettai (PI), located along the bank of the Vellar River in Tamil Nadu. Hence to fill the existing data gap after the strict ban on several POPs, high volume air sampling was conducted in PI to study the variability of atmospheric pesticidal POPs and polybrominated diphenyl ethers (PBDEs) during summer, pre-monsoon and monsoon. Emission source regions were tracked by using five days back trajectory analysis. Derived range of air concentrations in pg/m3 were: DDTs; BDL - 1976; HCHs, 260–1135, HCB; 52–135, chlordanes; 36–135, endosulfans; 66–1013. ∑6PBDE ranged between 25 and 155 with highest concentration in summer followed by pre-monsoon and monsoon. Atmospheric DDT and HCH in PI has drastically reduced by several thousand folds from the past report thereby showing the strict ban on agricultural use of these compounds. During monsoon fresh source of o,p′‑DDT, trans‑chlordane and α‑endosulfan was evident. Usually higher level of endosulphan sulfate in PI seems to be likely affected by the air mass originating from a neighbouring state Kerela, where endosulfan has been extensively used for cashew plantations. Similarly in summer, the day showing the highest level of PBDEs, the sample was concurrently impacted by air parcel comprised of two major clusters, 1 (25%) and 2 (49%) that traversed through the metropolitan cities like Bangalore and Chennai. Dominance of BDE-99 over BDE-47 in Parangipettai is in line with the PBDE profile reported from Chennai city during the similar time frame. Average concentration of tetra and penta BDE congeners in summer samples were nearly 2–3 folds higher than pre-monsoon or monsoon. Given the fact that strong localised source for heavier BDE congeners are lacking in PI, regional atmospheric transport from the strong emission source regions in Chennai

    Genetic Structure and Population Demographic History of a Widespread Mangrove Plant Xylocarpus granatum J. Koenig across the Indo-West Pacific Region

    Get PDF
    Xylocarpus granatum J. Koenig is one of the most widespread core component species of mangrove forests in the Indo-West Pacific (IWP) region, and as such is suitable for examining how genetic structure is generated across spatiotemporal scales. We evaluated the genetic structure of this species using maternally inherited chloroplast (cp) and bi-parentally inherited nuclear DNA markers, with samples collected across the species range. Both cp and nuclear DNA showed generally similar patterns, revealing three genetic groups in the Indian Ocean, South China Sea (with Palau), and Oceania, respectively. The genetic diversity of the Oceania group was significantly lower, and the level of population differentiation within the Oceania group was significantly higher, than in the South China Sea group. These results revealed that in addition to the Malay Peninsula—a common land barrier for mangroves—there is a genetic barrier in an oceanic region of the West Pacific that prevents gene flow among populations. Moreover, demographic inference suggested that these patterns were generated in relation to sea level changes during the last glacial period and the emergence of Sahul Shelf which lied northwest of Australia. We propose that the three genetic groups should be considered independent conservation units, and that the Oceania group has a higher conservation priority

    Genetic Structure and Population Demographic History of a Widespread Mangrove Plant Xylocarpus granatum J. Koenig across the Indo-West Pacific Region

    Get PDF
    Xylocarpus granatum J. Koenig is one of the most widespread core component species of mangrove forests in the Indo-West Pacific (IWP) region, and as such is suitable for examining how genetic structure is generated across spatiotemporal scales. We evaluated the genetic structure of this species using maternally inherited chloroplast (cp) and bi-parentally inherited nuclear DNA markers, with samples collected across the species range. Both cp and nuclear DNA showed generally similar patterns, revealing three genetic groups in the Indian Ocean, South China Sea (with Palau), and Oceania, respectively. The genetic diversity of the Oceania group was significantly lower, and the level of population differentiation within the Oceania group was significantly higher, than in the South China Sea group. These results revealed that in addition to the Malay Peninsula—a common land barrier for mangroves—there is a genetic barrier in an oceanic region of the West Pacific that prevents gene flow among populations. Moreover, demographic inference suggested that these patterns were generated in relation to sea level changes during the last glacial period and the emergence of Sahul Shelf which lied northwest of Australia. We propose that the three genetic groups should be considered independent conservation units, and that the Oceania group has a higher conservation priority

    The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern

    Get PDF
    Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced

    The loss of species: mangrove extinction risk and failure of critical exosystem services

    Get PDF
    Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species\u27 probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced

    When nature needs a helping hand: different levels of human intervention for mangrove (re-)establishment

    Get PDF
    Protecting existing mangrove forests is a priority for global conservation because of the wide range of services that these coastal forests provide to humankind. Despite the recent reduction in global rates of mangrove loss, high historical loss rates mean that there are at least 800,000 ha globally that are potentially suitable for mangrove re-establishment. Recently deposited mud banks or intertidal, previously terrestrial, land might provide additional habitat for expanding mangrove areas locally. There is a long history of mangrove rehabilitation. However, despite numerous good examples of, and growing expertise in, natural or assisted (re-)establishment activities, most mangrove planting efforts, for instance, either fail entirely or meet with only limited success. Exposed to waves and currents and subject to tidal inundation, mangroves differ from terrestrial forests, and approaches to, or tools for, terrestrial forest restoration cannot easily be transferred to mangrove forests. Successful mangrove (re-)establishment usually requires a robust understanding of the abiotic and biotic conditions of the chosen site, the ecological requirements of the mangrove species used or facilitated, the reasons for previous mangrove loss or degradation, as well as the barriers–both societal and ecological–that have prevented natural recovery to date. Because most mangrove forests are socio-ecological systems, with which local human populations are intimately engaged, (re-)establishment will normally require the support of, and engagement with, local communities and other local stakeholders. Here, we summarize where, when and why (re-)establishment of mangroves is needed and how to assess this need. We discuss a range of potential aims and goals of mangrove (re-)establishment along with potential pitfalls along the way from conceiving the initial idea to its realization. We compare different technical and conceptual approaches to mangrove (re-)establishment, their challenges and opportunities, and their design and financial requirements, as well as potential solutions. We ground our final outlook and recommendations on examples of successful efforts and the factors that rendered (re-)establishment successful in the past

    Microbial flora associated with submerged mangrove leaf litter in India

    No full text
    We studied the microbial flora in decomposing mangrove leaves in relation to changes in nitrogen and tannin levels, and in penaeid prawn assemblages. Senescent leaves of two mangrove species (Rhizophora apiculata and Avicennia marina) kept in nylon bags, were separately immersed for 80 days in five tanks full of mangrove water. A known amount of decomposing leaves was collected every ten days from each tank for microorganism counts, total nitrogen and tannin measurement, and juvenile penaeid prawn counts. Five genera of total heterotrophic bacteria (THB), three species of azotobacters and 19 species of fungi were identified. The azotobacters showed a significant peak around 40-50 days after the beginning of of decomposition, similar to the trend for total nitrogen and for prawn assemblages. Rev. Biol. Trop. 55 (2): 393-400. Epub 2007 June, 29.Se estudió la flora microbiana en hojas en descomposición de mangles, considerando nitrógeno, taninos y camarones peneidos jóvenes. Colocamos hojas viejas de dos especies de mangle (Rhizophora apiculata y Avicennia marina) en bolsas de nylon y las sumergimos en agua de manglar durante 80 días usando cinco tanques separados. Cada diez días extrajimos una cantidad conocida de hojas en descomposición de cada tanque. Hallamos cinco géneros de bacterias heterotróficas totales (THB), tres especies de azotobacterias y 19 especies de hongos. Las azotobacterias presentaron un pico significativo de abundancia alrededor de los 40-50 días de descomposición, un patrón similar a los del nitrógeno total y los camarones
    corecore