22 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Pre-exascale accelerated application development:The ORNL Summit experience

    No full text
    High-performance computing (HPC) increasingly relies on heterogeneous architectures to achieve higher performance. In the Oak Ridge Leadership Facility (OLCF), Oak Ridge, TN, USA, this trend continues as its latest supercomputer, Summit, entered production in early 2019. The combination of IBM POWER9 CPU and NVIDIA V100 GPU, along with a fast NVLink2 interconnect and other latest technologies, pushes system performance to a new height and breaks the exascale barrier by certain measures. Due to Summit's powerful GPUs and much higher GPU-CPU ratio, offloading to accelerators becomes a requirement for any application, which intends to effectively use the system. To facilitate navigating a complex landscape of competing heterogeneous architectures, a collection of applications from a wide spectrum of scientific domains is selected for early adoption on Summit. In this article, the experience and lessons learned are summarized, in the hope of providing useful guidance to address new programming challenges, such as scalability, performance portability, and software maintainability, for future application development efforts on heterogeneous HPC systems

    FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas

    No full text
    The axoneme—the conserved core of eukaryotic cilia and flagella—contains highly specialized doublet microtubules (DMTs). A long-standing question is what protein(s) compose the junctions between two tubules in DMT. Here we identify a highly conserved flagellar-associated protein (FAP), FAP20, as an inner junction (IJ) component. The flagella of Chlamydomonas FAP20 mutants have normal length but beat with an abnormal symmetrical three-dimensional pattern. In addition, the mutant axonemes are liable to disintegrate during beating, implying that interdoublet connections may be weakened. Conventional electron microscopy shows that the mutant axonemes lack the IJ, and cryo–electron tomography combined with a structural labeling method reveals that the labeled FAP20 localizes at the IJ. The mutant axonemes also lack doublet-specific beak structures, which are localized in the proximal portion of the axoneme and may be involved in planar asymmetric flagellar bending. FAP20 itself, however, may not be a beak component, because uniform localization of FAP20 along the entire length of all nine DMTs is inconsistent with the beak's localization. FAP20 is the first confirmed component of the IJ. Our data also suggest that the IJ is important for both stabilizing the axoneme and scaffolding intra–B-tubular substructures required for a planar asymmetrical waveform
    corecore