1,072 research outputs found

    A Discrete Ion Stochastic Continuum Overdamped Solvent Algorithm for Modeling Electrolytes

    Get PDF
    In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The methodology is an extension of the Fluctuating Immersed Boundary (FIB) approach that treats a solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic fields. In both cases the Immersed Boundary (IB) method of Peskin is used for particle-field coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated using the fluctuating Stokes equation, including a "dry diffusion" Brownian motion to account for scales not resolved by the coarse-grained model of the solvent. Long range electrostatic interactions are computed by solving the Poisson equation, with short range corrections included using a novel immersed-boundary variant of the classical Particle-Particle Particle-Mesh (P3M) technique. Also included is a short range repulsive force based on the Weeks-Chandler-Andersen (WCA) potential. The new methodology is validated by comparison to Debye-H{\"u}ckel theory for ion-ion pair correlation functions, and Debye-H{\"u}ckel-Onsager theory for conductivity, including the Wein effect for strong electric fields. In each case good agreement is observed, provided that hydrodynamic interactions at the typical ion-ion separation are resolved by the fluid grid.Comment: 30 pages, 12 figures, 2 table

    Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?

    Get PDF
    A wide variety of techniques have been developed to homogenize transport equations in multiscale and multiphase systems. This has yielded a rich and diverse field, but has also resulted in the emergence of isolated scientific communities and disconnected bodies of literature. Here, our goal is to bridge the gap between formal multiscale asymptotics and the volume averaging theory. We illustrate the methodologies via a simple example application describing a parabolic transport problem and, in so doing, compare their respective advantages/disadvantages from a practical point of view. This paper is also intended as a pedagogical guide and may be viewed as a tutorial for graduate students as we provide historical context, detail subtle points with great care, and reference many fundamental works

    The Iowa Homemaker vol.3, no.7

    Get PDF
    Table of Contents Home Economics Cleans House – Division Ready for New Year by Anna E. Richardson, page 1 Storing the Winter’s Supply of Vitamines by C. L. Fitch, page 2 First Hand Acquaintance With Tokyo’s Earthquake by Katherine Cranor, page 3 Hurrah for the Pumpkin Pie by Ruth Elaine Wilson, page 4 Choosing the Fall Hat by Florence Faust, page 5 Who is Responsible for the Child? by An “Old – Maid Aunt”, page 6 A Review of Farm Meats by Viola M. Bell, page 6 Color Hints From Gay October by Ruth Spencer, page 7 Paying Homage to the King of Fruits by Jeanette Beyer, page 8 Sheppard-Towner Bill by Lois Miller Herd, page 9 Buttons and _______ Buttons by Esther Ellen Rayburn, page 9 Candy Popularity by Esther Ellen Rayburn, page 13 Before the Bar of Science by Eda Lord Murphy, page 15 Gingered Pears by Elizabeth Storm, page 1

    A systematic variation of the stellar initial mass function in early-type galaxies

    Get PDF
    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars. It depends on the stellar initial mass function (IMF) describing the distribution of stellar masses when the population formed. Consequently knowledge of the IMF is critical to virtually every aspect of galaxy evolution. More than half a century after the first IMF determination, no consensus has emerged on whether it is universal in different galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot be both universal, but they could not break the degeneracy between the two effects. Only recently indications were found that massive elliptical galaxies may not have the same IMF as our Milky Way. Here we report unambiguous evidence for a strong systematic variation of the IMF in early-type galaxies as a function of their stellar mass-to-light ratio, producing differences up to a factor of three in mass. This was inferred from detailed dynamical models of the two-dimensional stellar kinematics for the large Atlas3D representative sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass. Our finding indicates that the IMF depends intimately on a galaxy's formation history.Comment: 4 pages, 2 figures, LaTeX. Accepted for publication as a Nature Letter. More information about our Atlas3D project is available at http://purl.org/atlas3

    Argumentation in school science : Breaking the tradition of authoritative exposition through a pedagogy that promotes discussion and reasoning

    Get PDF
    The value of argumentation in science education has become internationally recognised and has been the subject of many research studies in recent years. Successful introduction of argumentation activities in learning contexts involves extending teaching goals beyond the understanding of facts and concepts, to include an emphasis on cognitive and metacognitive processes, epistemic criteria and reasoning. The authors focus on the difficulties inherent in shifting a tradition of teaching from one dominated by authoritative exposition to one that is more dialogic, involving small-group discussion based on tasks that stimulate argumentation. The paper builds on previous research on enhancing the quality of argument in school science, to focus on how argumentation activities have been designed, with appropriate strategies, resources and modelling, for pedagogical purposes. The paper analyses design frameworks, their contexts and lesson plans, to evaluate their potential for enhancing reasoning through foregrounding the processes of argumentation. Examples of classroom dialogue where teachers adopt the frameworks/plans are analysed to show how argumentation processes are scaffolded. The analysis shows that several layers of interpretation are needed and these layers need to be aligned for successful implementation. The analysis serves to highlight the potential and limitations of the design frameworks

    US SOLAS Science Report

    Get PDF
    The article of record may be found at https://doi.org/10.1575/1912/27821The Surface Ocean – Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (BrĂ©viĂšre et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (BrĂ©viĂšre et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G).This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G)
    • 

    corecore