11 research outputs found

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University

    Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking is a known cause of the outcomes COPD, chronic bronchitis (CB) and emphysema, but no previous systematic review exists. We summarize evidence for various smoking indices.</p> <p>Methods</p> <p>Based on MEDLINE searches and other sources we obtained papers published to 2006 describing epidemiological studies relating incidence or prevalence of these outcomes to smoking. Studies in children or adolescents, or in populations at high respiratory disease risk or with co-existing diseases were excluded. Study-specific data were extracted on design, exposures and outcomes considered, and confounder adjustment. For each outcome RRs/ORs and 95% CIs were extracted for ever, current and ex smoking and various dose response indices, and meta-analyses and meta-regressions conducted to determine how relationships were modified by various study and RR characteristics.</p> <p>Results</p> <p>Of 218 studies identified, 133 provide data for COPD, 101 for CB and 28 for emphysema. RR estimates are markedly heterogeneous. Based on random-effects meta-analyses of most-adjusted RR/ORs, estimates are elevated for ever smoking (COPD 2.89, CI 2.63-3.17, n = 129 RRs; CB 2.69, 2.50-2.90, n = 114; emphysema 4.51, 3.38-6.02, n = 28), current smoking (COPD 3.51, 3.08-3.99; CB 3.41, 3.13-3.72; emphysema 4.87, 2.83-8.41) and ex smoking (COPD 2.35, 2.11-2.63; CB 1.63, 1.50-1.78; emphysema 3.52, 2.51-4.94). For COPD, RRs are higher for males, for studies conducted in North America, for cigarette smoking rather than any product smoking, and where the unexposed base is never smoking any product, and are markedly lower when asthma is included in the COPD definition. Variations by sex, continent, smoking product and unexposed group are in the same direction for CB, but less clearly demonstrated. For all outcomes RRs are higher when based on mortality, and for COPD are markedly lower when based on lung function. For all outcomes, risk increases with amount smoked and pack-years. Limited data show risk decreases with increasing starting age for COPD and CB and with increasing quitting duration for COPD. No clear relationship is seen with duration of smoking.</p> <p>Conclusions</p> <p>The results confirm and quantify the causal relationships with smoking.</p

    Exploring the genetic basis of chronic periodontitis: a genome-wide association study

    No full text
    Chronic periodontitis (CP) is a common oral disease that confers substantial systemic inflammatory and microbial burden and is a major cause of tooth loss. Here, we present the results of a genome-wide association study of CP that was carried out in a cohort of 4504 European Americans (EA) participating in the Atherosclerosis Risk in Communities (ARIC) Study (mean age—62 years, moderate CP—43% and severe CP—17%). We detected no genome-wide significant association signals for CP; however, we found suggestive evidence of association (P < 5 × 10(−6)) for six loci, including NIN, NPY, WNT5A for severe CP and NCR2, EMR1, 10p15 for moderate CP. Three of these loci had concordant effect size and direction in an independent sample of 656 adult EA participants of the Health, Aging, and Body Composition (Health ABC) Study. Meta-analysis pooled estimates were severe CP (n = 958 versus health: n = 1909)—NPY, rs2521634 [G]: odds ratio [OR = 1.49 (95% confidence interval (CI = 1.28–1.73, P = 3.5 × 10(−7)))]; moderate CP (n = 2293)—NCR2, rs7762544 [G]: OR = 1.40 (95% CI = 1.24–1.59, P = 7.5 × 10(−8)), EMR1, rs3826782 [A]: OR = 2.01 (95% CI = 1.52–2.65, P = 8.2 × 10(−7)). Canonical pathway analysis indicated significant enrichment of nervous system signaling, cellular immune response and cytokine signaling pathways. A significant interaction of NUAK1 (rs11112872, interaction P = 2.9 × 10(−9)) with smoking in ARIC was not replicated in Health ABC, although estimates of heritable variance in severe CP explained by all single nucleotide polymorphisms increased from 18 to 52% with the inclusion of a genome-wide interaction term with smoking. These genome-wide association results provide information on multiple candidate regions and pathways for interrogation in future genetic studies of CP

    Unraveling the Chemistry of Chemokine Receptor Ligands

    No full text

    Structure–Function Relationships of Antimicrobial Chemokines

    No full text
    corecore