9 research outputs found

    The MDM2 antagonist idasanutlin in patients with polycythemia vera:results from a single-arm phase 2 study

    Get PDF
    Idasanutlin, an MDM2 antagonist, showed clinical activity and a rapid reduction in JAK2 V617F allele burden in patients with polycythemia vera (PV) in a phase 1 study. This open-label phase 2 study evaluated idasanutlin in patients with hydroxyurea (HU)-resistant/-intolerant PV, per the European LeukemiaNet criteria, and phlebotomy dependence; prior ruxolitinib exposure was permitted. Idasanutlin was administered once daily on days 1 through 5 of each 28-day cycle. The primary end point was composite response (hematocrit control and spleen volume reduction > 35%) in patients with splenomegaly and hematocrit control in patients without splenomegaly at week 32. Key secondary end points included safety, complete hematologic response (CHR), patient-reported outcomes, and molecular responses. All patients (n = 27) received idasanutlin; 16 had response assessment (week 32). Among responders with baseline splenomegaly (n = 13), 9 (69%) attained any spleen volume reduction, and 1 achieved composite response. Nine patients (56%) achieved hematocrit control, and 8 patients (50%) achieved CHR. Overall, 43% of evaluable patients (6/14) showed a ≥50% reduction in the Myeloproliferative Neoplasm Symptom Assessment Form Total Symptom Score (week 32). Nausea (93%), diarrhea (78%), and vomiting (41%) were the most common adverse events, with grade ≥ 3 nausea or vomiting experienced by 3 patients (11%) and 1 patient (4%), respectively. Reduced JAK2 V617F allele burden occurred early (after 3 cycles), with a median reduction of 76%, and was associated with achieving CHR and hematocrit control. Overall, the idasanutlin dosing regimen showed clinical activity and rapidly reduced JAK2 allele burden in patients with HU-resistant/- intolerant PV but was associated with low-grade gastrointestinal toxicity, leading to poor long-term tolerability. This trial was registered at www.clinincaltrials.gov as #NCT03287245

    Obinutuzumab-atezolizumab-lenalidomide for the treatment of patients with relapsed/refractory follicular lymphoma: final analysis of a Phase Ib/II trial

    No full text
    International audienceWe evaluated the triplet regimen obinutuzumab-atezolizumab-lenalidomide (G-atezo-len) for patients with relapsed/refractory (R/R) follicular lymphoma (FL) in an open-label, multicenter phase Ib/II study (BO29562; NCT02631577). An initial 3 + 3 dose‐escalation phase to define the recommended phase II dose of lenalidomide was followed by an expansion phase with G-atezo-len induction and maintenance. At final analysis, 38 patients (lenalidomide 15 mg, n = 4; 20 mg, n = 34) had completed the trial. Complete response rate for the efficacy population (lenalidomide 20 mg, n = 32) at end-of-induction was 71.9% (66.7% in double‐refractory patients [refractory to rituximab and alkylator] [n = 12]; 50.0% in patients with progressive disease within 24 months of first-line therapy [n = 12]). The 36-month progression-free survival rate was 68.4%. All treated patients had ≥1 adverse event (AE; grade 3–5 AE, 32 patients [84%]; serious AE, 18 patients [47%]; AEs leading to discontinuation of any study drug, 11 patients [29%]). There were 2 fatal AEs (1 merkel carcinoma, 1 sarcomatoid carcinoma; both unrelated to any study drug). The G‐atezo-len regimen is effective and tolerable in patients with R/R FL. AEs were consistent with the known safety profile of the individual drugs

    Nanotechnology applications in drug controlled release

    No full text
    Nanotechnology is the manipulation of matter, involving physical and chemicaltransformations, in order to produce materials at the nanoscale. The word nano,which derives from Latin, signifies dwarf and mathematically is the billionthpart of a meter. Nanotechnology comprises the study, design, creation, synthesis,characterization, manipulation and application of materials, apparatus and systemsthrough the control of material structure at the nanoscale, and the exploitation ofphenomena and properties of matter at atomic or molecular scale. When manipulatingmatter at nanoscale, the material properties change. For example, quantumeffects have dominance, the surface area increases, and thermal, electrical, andmagnetic property of the material varies. Nanotechnology is emerging as a fieldin medicine that is expected to elicit significant therapeutic benefits to improvedrugs bioavailability.Drug delivery research is clearly moving from the micro to the nanoscale. Anideal drug-delivery system must be able to target and control the drug release.Targeting will ensure high efficiency of the drug and reduce the side effects,especially when dealing with drugs that are presumed to kill cancer cells but canalso kill healthy cells when delivered to them. The reduction or prevention of sideeffects can also be achieved by controlled release. The formulation of nanosizedsystems for the delivery of drugs is very attractive to scientists for differentreasons, of which one of the most important is that there is an increase in the ratiobetween the number of atoms or molecules on the surface and the total number ofatoms or molecules. Accordingly, the surface area increases, helping to bind,adsorb or carry compounds such as drugs, probes, and proteins.Fil: Simonazzi, Analía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Cid, Alicia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Villegas, Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Romero, Analía Irma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Palma, Santiago Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; ArgentinaFil: Bermudez, Jose Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentin
    corecore