9 research outputs found

    Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis

    Get PDF
    Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions

    Evolutionary success of prokaryotes

    No full text
    How can the evolutionary success of prokaryotes be explained ? How did they manage to survive conditions that have fluctuated, with drastic events over 3.5 billion years ? Which significant metabolisms and mechanisms have appeared over the course of evolution that have permitted them to survive the most inhospitable conditions from the physicochemical point of view ? In a 'Red Queen Race', prokaryotes have always run sufficiently fast to adapt to constraints imposed by the environment and the other living species with which they have established interactions. If the criterion retained to define the level of evolution of an organism is its capacity to survive and to yield the largest number of offsprings, prokaryotes must be considered highly evolved organisms
    corecore