30 research outputs found

    Imaging Biomarkers in Prostate Stereotactic Body Radiotherapy: A Review and Clinical Trial Protocol

    Get PDF
    Advances in imaging have changed prostate radiotherapy through improved biochemical control from focal boost and improved detection of recurrence. These advances are reviewed in the context of prostate stereotactic body radiation therapy (SBRT) and the ARGOS/CLIMBER trial protocol. ARGOS/CLIMBER will evaluate 1) the safety and feasibility of SBRT with focal boost guided by multiparametric MRI (mpMRI) and 18F-PSMA-1007 PET and 2) imaging and laboratory biomarkers for response to SBRT. To date, response to prostate SBRT is most commonly evaluated using the Phoenix Criteria for biochemical failure. The drawbacks of this approach include lack of lesion identification, a high false-positive rate, and delay in identifying treatment failure. Patients in ARGOS/CLIMBER will receive dynamic 18F-PSMA-1007 PET and mpMRI prior to SBRT for treatment planning and at 6 and 24 months after SBRT to assess response. Imaging findings will be correlated with prostate-specific antigen (PSA) and biopsy results, with the goal of early, non-invasive, and accurate identification of treatment failure

    LI-RADS: A Conceptual and Historical Review from Its Beginning to Its Recent Integration into AASLD Clinical Practice Guidance

    Get PDF
    The Liver Imaging Reporting and Data System (LI-RADS®) is a comprehensive system for standardizing the terminology, technique, interpretation, reporting, and data collection of liver observations in individuals at high risk for hepatocellular carcinoma (HCC). LI-RADS is supported and endorsed by the American College of Radiology (ACR). Upon its initial release in 2011, LI-RADS applied only to liver observations identified at CT or MRI. It has since been refined and expanded over multiple updates to now also address ultrasound-based surveillance, contrast-enhanced ultrasound for HCC diagnosis, and CT/MRI for assessing treatment response after locoregional therapy. The LI-RADS 2018 version was integrated into the HCC diagnosis, staging, and management practice guidance of the American Association for the Study of Liver Diseases (AASLD). This article reviews the major LI-RADS updates since its 2011 inception and provides an overview of the currently published LI-RADS algorithms

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The use of PET/MRI for imaging rectal cancer.

    No full text

    Rectal cancer MR staging: pearls and pitfalls at baseline examination

    No full text
    International audienceIn recent years, rectal MRI has become a central diagnostic tool in rectal cancer staging. Indeed, rectal MR has the ability to accurately evaluate a number of important findings that may impact patient management, including distance of the tumor to the mesorectal fascia, presence of extramural vascular invasion (EMVI), presence of lymph nodes, and involvement of the peritoneum/anterior peritoneal reflection. Many of these findings are difficult to assess in nonexpert hands. In this review, we present a practical approach for radiologists to provide high-quality interpretations at initial baseline exams, based on recent guidelines from the Society of Abdominal Radiology, Rectal and Anal Cancer Disease Focused Panel. Practical pearls and pitfalls are discussed, focusing on optimization of technique including, patient preparation and protocol recommendations, interpretation, and essentials of reporting

    Tripartite-GAN: Synthesizing liver contrast-enhanced MRI to improve tumor detection.

    No full text
    Contrast-enhanced magnetic resonance imaging (CEMRI) is crucial for the diagnosis of patients with liver tumors, especially for the detection of benign tumors and malignant tumors. However, it suffers from high-risk, time-consuming, and expensive in current clinical diagnosis due to the use of the gadolinium-based contrast agent (CA) injection. If the CEMRI can be synthesized without CA injection, there is no doubt that it will greatly optimize the diagnosis. In this study, we propose a Tripartite Generative Adversarial Network (Tripartite-GAN) as a non-invasive, time-saving, and inexpensive clinical tool by synthesizing CEMRI to detect tumors without CA injection. Specifically, our innovative Tripartite-GAN combines three associated-networks (an attention-aware generator, a convolutional neural network-based discriminator, and a region-based convolutional neural network-based detector) for the first time, which achieves CEMRI synthesis and tumor detection promoting each other in an end-to-end framework. The generator facilitates detector for accurate tumor detection via synthesizing tumor-specific CEMRI. The detector promotes the generator for accurate CEMRI synthesis via the back-propagation. In order to synthesize CEMRI of equivalent clinical value to real CEMRI, the attention-aware generator expands the receptive field via hybrid convolution, and enhances feature representation and context learning of multi-class liver MRI via dual attention mechanism, and improves the performance of convergence of loss via residual learning. Moreover, the attention maps obtained from the generator newly added into the detector improve the performance of tumor detection. The discriminator promotes the generator to synthesize high-quality CEMRI via the adversarial learning strategy. This framework is tested on a large corpus of axial T1 FS Pre-Contrast MRI and axial T1 FS Delay MRI of 265 subjects. Experimental results and quantitative evaluation demonstrate that the Tripartite-GAN achieves high-quality CEMRI synthesis that peak signal-to-noise rate of 28.8 and accurate tumor detection that accuracy of 89.4%, which reveals that Tripartite-GAN can aid in the clinical diagnosis of liver tumors
    corecore