73 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    A remotely steered millimetre wave launcher for electron cyclotron heating and current drive on ITER

    No full text
    High-power millimetre wave beams employed on ITER for heating and current drive at the 170 GHz electron cyclotron resonance frequency require agile steering and tight focusing of the beams to suppress neoclassical tearing modes. This paper presents experimental validation of the remote steering (RS) concept of the ITER upper port millimetre wave beam launcher. Remote steering at the entrance of the upper port launcher rather than at the plasma side offers advantages in reliability and maintenance of the mechanically vulnerable steering system. A one-to-one scale mock-up consisting of a transmission line, mitre bends, remote steering unit, vacuum window, square corrugated waveguide and front mirror simulates the ITER launcher design configuration. Validation is based on low-power heterodyne measurements of the complex amplitude and phase distribution of the steered Gaussian beam. High-power (400 kW) short pulse (10 ms) operation under vacuum, diagnosed by calorimetry and thermography of the near- and far-field beam patterns, confirms high-power operation, but shows increased power loss attributed to deteriorating input beam quality compared with low-power operation. Polarization measurements show little variation with steering, which is important for effective current drive requiring elliptical polarization for O-mode excitation. Results show that a RS range of up to -12° to +12° can be achieved with acceptable beam quality. These measurements confirm the back-up design of the ITER ECRH&CD launcher with future application for DEMO

    Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    Get PDF
    This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from an all carbon plasma facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared to their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease of the pedestal confinement but is partially recovered with the injection of nitrogen.Comment: 30 pages, 16 figure

    Overview of JET results

    No full text
    corecore