91 research outputs found

    Wide field beamformed observation with MeerKAT

    Full text link
    Large-scale beamforming with radio interferometers has the potential to revolutionize the science done with pulsars and fast radio bursts by improving the survey efficiency for these sources. We describe a wide-field beamformer for the MeerKAT radio telescope and outline strategies to optimally design such surveys. A software implementation of these techniques, MOSAIC{\rm M{\small OSAIC}} is introduced and its application in the MeerKAT telescope is presented. We show initial results using the beamformer by observing a globular cluster to track several pulsars simultaneously and demonstrate the source localization capability of this observation

    PuMaII: A wide band pulsar machine for the WSRT

    Full text link
    The Pulsar Machine II (PuMa II) is the new flexible pulsar processing backend system at the Westerbork Synthesis Radio Telescope (WSRT), specifically designed to take advantage of the upgraded WSRT. The instrument is based on a computer cluster running the Linux operating system, with minimal custom hardware. A maximum of 160 MHz analogue bandwidth sampled as 8X20 MHz subbands with 8-bit resolution can be recorded on disks attached to separate computer nodes. Processing of the data is done in the additional 32-nodes allowing near real time coherent dedispersion for most pulsars observed at the WSRT. This has doubled the bandwidth for pulsar observations in general, and has enabled the use of coherent dedispersion over a bandwidth eight times larger than was previously possible at the WSRT. PuMa II is one of the widest bandwidth coherent dedispersion machines currently in use and has a maximum time resolution of 50ns. The system is now routinely used for high precision pulsar timing studies, polarization studies, single pulse work and a variety of other observational work.Comment: 29 pages, 8 figures. To appear in February issue of the PAS

    BlackHoleCam -- Testing general relativity with pulsars orbiting Sagittarius A*

    Full text link
    BlackHoleCam is a project funded by a European Research Council Synergy Grant to build a complete astrophysical description of nearby supermassive black holes by using a combination of radio imaging, pulsar observations, stellar astrometry and general relativistic magneto-hydrodynamic models. BlackHoleCam scientists are active partners of the Event Horizon Telescope Consortium. In this talk I will discuss the use of pulsars orbiting Sagittarius A* for tests of General Relativity, the current difficulties in detecting such sources, recent results from the Galactic Centre magnetar PSR J1745-2900 and how BlackHoleCam aims to search for undiscovered pulsars in the Galactic Centre.Comment: 4 pages, 3 figures, Proceedings of The Fifteenth Marcel Grossmann Meeting on General Relativity, University of Rome La Sapienza, Italy, 1 - 7 July 201

    A Comprehensive Assessment of Climate Change and Coastal Inundation through Satellite-Derived Datasets: A Case Study of Sabang Island, Indonesia

    Get PDF
    Climate-change-induced hazards are negatively affecting the small islands across Indonesia. Sabang Island is one of the most vulnerable small islands due to the rising sea levels and increasing coastal inundation which threaten the low-lying coastal areas with and without coastal defences. However, there is still a lack of studies concerning the long-term trends in climatic variables and, consequently, sea level changes in the region. Accordingly, the current study attempts to comprehensively assess sea level changes and coastal inundation through satellite-derived datasets and model-based products around Sabang Island, Indonesia. The findings of the study show that the temperature (both minimum and maximum) and rainfall of the island are increasing by ~0.01 °C and ~11.5 mm per year, respectively. The trends of temperature and rainfall are closely associated with vegetative growth; an upward trend in the dense forest is noticed through the enhanced vegetation index (EVI). The trend analysis of satellite altimeter datasets shows that the sea level is increasing at a rate of 6.6 mm/year. The DEM-based modelling shows that sea level rise poses the greatest threat to coastal habitations and has significantly increased in recent years, accentuated by urbanisation. The GIS-based model results predict that about half of the coastal settlements (2.5 sq km) will be submerged completely within the next 30 years, provided the same sea level rise continues. The risk of coastal inundation is particularly severe in Sabang, the largest town on the island. The results allow regional, sub-regional, and local comparisons that can assess variations in climate change, sea level rise, coastal inundation, and associated vulnerabilitie

    A Gaussian-processes approach to fitting for time-variable spherical solar wind in pulsar timing data

    Get PDF
    Propagation effects are one of the main sources of noise in high-precision pulsar timing. For pulsars below an ecliptic latitude of 5°, the ionized plasma in the solar wind can introduce dispersive delays of order 100 µs around solar conjunction at an observing frequency of 300 MHz. A common approach to mitigate this assumes a spherical solar wind with a time-constant amplitude. However, this has been shown to be insufficient to describe the solar wind. We present a linear, Gaussian-process piecewise Bayesian approach to fit a spherical solar wind of time-variable amplitude, which has been implemented in the pulsar software RUN_ENTERPRISE. Through simulations, we find that the current EPTA+InPTA data combination is not sensitive to such variations; however, solar wind variations will become important in the near future with the addition of new InPTA data and data collected with the low-frequency LOFAR telescope. We also compare our results for different high-precision timing data sets (EPTA+InPTA, PPTA, and LOFAR) of 3 ms pulsars (J0030+0451, J1022+1001, J2145−0450), and find that the solar-wind amplitudes are generally consistent for any individual pulsar, but they can vary from pulsar to pulsar. Finally, we compare our results with those of an independent method on the same LOFAR data of the three millisecond pulsars. We find that differences between the results of the two methods can be mainly attributed to the modelling of dispersion variations in the interstellar medium, rather than the solar wind modelling

    Current results and future prospects from PSR J1757-1854, a highly-relativistic double neutron star binary

    Get PDF
    Pulsars, rapidly-rotating highly-magnetised neutron stars, can serve as useful laboratories for probing aspects of fundamental physics. Binary pulsars, especially those in tight binary systems with massive, compact companions, are useful in testing different theories of gravity, the current paradigm being General Relativity (GR). Additionally, binary pulsars can also be utilised to explore other areas of fundamental physics, such as the behaviour of matter at ultra-high densities and the neutron star moment of inertia. A standout example is PSR J1757-1854, a 21.5-ms pulsar in a highly-eccentric (e=0.61), 4.4-hr orbit around a neutron star companion. This pulsar exhibits some of the most extreme relativistic parameters ever observed in a binary pulsar, reaching a maximum line-of-sight acceleration of close to 700 m/s/s and displaying among the strongest relativistic effects due to gravitational wave damping. To date, five post-Keplerian parameters have been measured in PSR J1757-1854, allowing for three independent tests of gravity to be conducted (of which GR passes all three) and for the component neutron star masses to be separated. The extreme properties of this system (particularly its high eccentricity) are expected to allow for future measurements of Lense-Thirring precession effects (allow for a measurement of the neutron star moment of inertia) and the relativistic deformation of the orbit, both of which remain almost completely unexplored by other binary systems. Although first discovered by the Parkes Radio Telescope in 2016 as part of the High Time Resolution Universe Southern Galactic Plane survey, it is ongoing observations with the Green Bank Telescope (GBT) which have provided the backbone of PSR J1757-1854’s continuing study. The large-bandwidth, high-precision observations afforded by the GBT played a fundamental role in delivering the science derived from the pulsar so far, and will be critical in allowing it to reach its full scientific potential going forward. In this talk I will provide a progress report on the ongoing timing of the system, including a review of the latest mass measurements and gravity tests, with an emphasis towards the future science which this pulsar will make possible

    Pulsar observations with European telescopes for testing gravity and detecting gravitational waves

    Get PDF
    A background of nanohertz gravitational waves from supermassive black hole binaries could soon be detected by pulsar timing arrays, which measure the times-of-arrival of radio pulses from millisecond pulsars with very high precision. The European Pulsar Timing Array uses five large European radio telescopes to monitor high-precision millisecond pulsars, imposing in this way strong constraints on a gravitational wave background. To achieve the necessary precision needed to detect gravitational waves, the Large European Array for Pulsars (LEAP) performs simultaneous observations of pulsars with all five telescopes, which allows us to coherently add the radio pulses, maximize the signal-to-noise of pulsar signals and increase the precision of times-of-arrival. We report on the progress made and results obtained by the LEAP collaboration, and in particular on the addition of the Sardinia Radio Telescope to the LEAP observations during its scientific validation phase. In addition, we discuss how LEAP can be used to monitor strong-gravity systems such as double neutron star systems and impose strong constraints on post-keplerian parameters

    First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole

    Get PDF
    We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc(2) = 3.8 +/- 0.4 mu as. Folding in a distance measurement of 16.8(-0.7)(+0.8) gives a black hole mass of M = 6.5. 0.2 vertical bar(stat) +/- 0.7 vertical bar(sys) x 10(9) M-circle dot. This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity
    • …
    corecore