112 research outputs found

    Alberta Diabetes and Physical Activity Trial (ADAPT): A randomized theory-based efficacy trial for adults with type 2 diabetes - rationale, design, recruitment, evaluation, and dissemination

    Get PDF
    Background: The primary aim of this study was to compare the efficacy of three physical activity (PA) behavioural intervention strategies in a sample of adults with type 2 diabetes. Method/Design: Participants (N = 287) were randomly assigned to one of three groups consisting of the following intervention strategies: (1) standard printed PA educational materials provided by the Canadian Diabetes Association [i.e., Group 1/control group)]; (2) standard printed PA educational materials as in Group 1, pedometers, a log book and printed PA information matched to individuals' PA stage of readiness provided every 3 months (i.e., Group 2); and (3) PA telephone counseling protocol matched to PA stage of readiness and tailored to personal characteristics, in addition to the materials provided in Groups 1 and 2 (i.e., Group 3). PA behaviour measured by the Godin Leisure Time Exercise Questionnaire and related social-cognitive measures were assessed at baseline, 3, 6, 9, 12 and 18-months (i.e., 6-month follow-up). Clinical (biomarkers) and health-related quality of life assessments were conducted at baseline, 12-months, and 18-months. Linear Mixed Model (LMM) analyses will be used to examine time-dependent changes from baseline across study time points for Groups 2 and 3 relative to Group 1. Discussion: ADAPT will determine whether tailored but low-cost interventions can lead to sustainable increases in PA behaviours. The results may have implications for practitioners in designing and implementing theory-based physical activity promotion programs for this population

    Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts.

    Get PDF
    OBJECTIVES: To develop and validate a genetic tool to predict age of onset of aggressive prostate cancer (PCa) and to guide decisions of who to screen and at what age. DESIGN: Analysis of genotype, PCa status, and age to select single nucleotide polymorphisms (SNPs) associated with diagnosis. These polymorphisms were incorporated into a survival analysis to estimate their effects on age at diagnosis of aggressive PCa (that is, not eligible for surveillance according to National Comprehensive Cancer Network guidelines; any of Gleason score ≥7, stage T3-T4, PSA (prostate specific antigen) concentration ≥10 ng/L, nodal metastasis, distant metastasis). The resulting polygenic hazard score is an assessment of individual genetic risk. The final model was applied to an independent dataset containing genotype and PSA screening data. The hazard score was calculated for these men to test prediction of survival free from PCa. SETTING: Multiple institutions that were members of international PRACTICAL consortium. PARTICIPANTS: All consortium participants of European ancestry with known age, PCa status, and quality assured custom (iCOGS) array genotype data. The development dataset comprised 31 747 men; the validation dataset comprised 6411 men. MAIN OUTCOME MEASURES: Prediction with hazard score of age of onset of aggressive cancer in validation set. RESULTS: In the independent validation set, the hazard score calculated from 54 single nucleotide polymorphisms was a highly significant predictor of age at diagnosis of aggressive cancer (z=11.2, P98th centile) were compared with those with average scores (30th-70th centile), the hazard ratio for aggressive cancer was 2.9 (95% confidence interval 2.4 to 3.4). Inclusion of family history in a combined model did not improve prediction of onset of aggressive PCa (P=0.59), and polygenic hazard score performance remained high when family history was accounted for. Additionally, the positive predictive value of PSA screening for aggressive PCa was increased with increasing polygenic hazard score. CONCLUSIONS: Polygenic hazard scores can be used for personalised genetic risk estimates that can predict for age at onset of aggressive PCa

    A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data

    Get PDF
    Background: A polygenic hazard score (PHS), the weighted sum of 54 SNP genotypes, was previously validated for association with clinically significant prostate cancer and for improved prostate cancer screening accuracy. Here, we assess the potential impact of PHS-informed screening. / Methods: United Kingdom population incidence data (Cancer Research United Kingdom) and data from the Cluster Randomized Trial of PSA Testing for Prostate Cancer were combined to estimate age-specific clinically significant prostate cancer incidence (Gleason score ≥7, stage T3–T4, PSA ≥10, or nodal/distant metastases). Using HRs estimated from the ProtecT prostate cancer trial, age-specific incidence rates were calculated for various PHS risk percentiles. Risk-equivalent age, when someone with a given PHS percentile has prostate cancer risk equivalent to an average 50-year-old man (50-year-standard risk), was derived from PHS and incidence data. Positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was calculated using PHS-adjusted age groups. / Results: The expected age at diagnosis of clinically significant prostate cancer differs by 19 years between the 1st and 99th PHS percentiles: men with PHS in the 1st and 99th percentiles reach the 50-year-standard risk level at ages 60 and 41, respectively. PPV of PSA was higher for men with higher PHS-adjusted age. / Conclusions: PHS provides individualized estimates of risk-equivalent age for clinically significant prostate cancer. Screening initiation could be adjusted by a man's PHS. / Impact: Personalized genetic risk assessments could inform prostate cancer screening decisions

    Cardiac lymphatics in health and disease

    Get PDF
    The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.Peer reviewe

    Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts

    Get PDF
    Objectives To develop and validate a genetic tool to predict age of onset of aggressive prostate cancer (PCa) and to guide decisions of who to screen and at what age. Design Analysis of genotype, PCa status, and age to select single nucleotide polymorphisms (SNPs) associated with diagnosis. These polymorphisms were incorporated into a survival analysis to estimate their effects on age at diagnosis of aggressive PCa (that is, not eligible for surveillance according to National Comprehensive Cancer Network guidelines; any of Gleason score ≥7, stage T3-T4, PSA (prostate specific antigen) concentration ≥10 ng/L, nodal metastasis, distant metastasis). The resulting polygenic hazard score is an assessment of individual genetic risk. The final model was applied to an independent dataset containing genotype and PSA screening data. The hazard score was calculated for these men to test prediction of survival free from PCa. Setting Multiple institutions that were members of international PRACTICAL consortium. Participants All consortium participants of European ancestry with known age, PCa status, and quality assured custom (iCOGS) array genotype data. The development dataset comprised 31 747 men; the validation dataset comprised 6411 men. Main outcome measures Prediction with hazard score of age of onset of aggressive cancer in validation set. Results In the independent validation set, the hazard score calculated from 54 single nucleotide polymorphisms was a highly significant predictor of age at diagnosis of aggressive cancer (z=11.2, P98th centile) were compared with those with average scores (30th-70th centile), the hazard ratio for aggressive cancer was 2.9 (95% confidence interval 2.4 to 3.4). Inclusion of family history in a combined model did not improve prediction of onset of aggressive PCa (P=0.59), and polygenic hazard score performance remained high when family history was accounted for. Additionally, the positive predictive value of PSA screening for aggressive PCa was increased with increasing polygenic hazard score. Conclusions Polygenic hazard scores can be used for personalised genetic risk estimates that can predict for age at onset of aggressive PCa

    Polygenic hazard score to guide screening for aggressive - prostate cancer: development and validation in large scale - cohorts

    Get PDF
    OBJECTIVESTo develop and validate a genetic tool to predict age of onset of aggressive prostate cancer (PCa) and to guide decisions of who to screen and at what age.DESIGNAnalysis of genotype, PCa status, and age to select single nucleotide polymorphisms (SNPs) associated with diagnosis. These polymorphisms were incorporated into a survival analysis to estimate their effects on age at diagnosis of aggressive PCa (that is, not eligible for surveillance according to National Comprehensive Cancer Network guidelines; any of Gleason score >= 7, stage T3-T4, PSA (prostate specific antigen) concentration >= 10 ng/L, nodal metastasis, distant metastasis). The resulting polygenic hazard score is an assessment of individual genetic risk. The final model was applied to an independent dataset containing genotype and PSA screening data. The hazard score was calculated for these men to test prediction of survival free from PCa.SETTINGMultiple institutions that were members of international PRACTICAL consortium.PARTICIPANTSAll consortium participants of European ancestry with known age, PCa status, and quality assured custom (iCOGS) array genotype data. The development dataset comprised 31 747 men; the validation dataset comprised 6411 men.MAIN OUTCOME MEASURESPrediction with hazard score of age of onset of aggressive cancer in validation set.RESULTSIn the independent validation set, the hazard score calculated from 54 single nucleotide polymorphisms was a highly significant predictor of age at diagnosis of aggressive cancer (z= 11.2, P98th centile) were compared with those with average scores (30th-70th centile), the hazard ratio for aggressive cancer was 2.9 (95% confidence interval 2.4 to 3.4). Inclusion of family history in a combined model did not improve prediction of onset of aggressive PCa (P= 0.59), and polygenic hazard score performance remained high when family history was accounted for. Additionally, the positive predictive value of PSA screening for aggressive PCa was increased with increasing polygenic hazard score.CONCLUSIONSPolygenic hazard scores can be used for personalised genetic risk estimates that can predict for age at onset of aggressive PCa

    A genetic risk score to personalize prostate cancer screening, applied to population data.

    Get PDF
    Background: A polygenic hazard score (PHS)—the weighted sum of 54 SNP genotypes—was previously validated for association with clinically significant prostate cancer and for improved prostate cancer screening accuracy. Here, we assess the potential impact of PHS-informed screening. Methods: UK population incidence data (Cancer Research UK) and data from the Cluster Randomized Trial of PSA Testing for Prostate Cancer were combined to estimate age-specific clinically significant prostate cancer incidence (Gleason≥7, stage T3-T4, PSA ≥10, or nodal/distant metastases). Using hazard ratios estimated from the ProtecT prostate cancer trial, age-specific incidence rates were calculated for various PHS risk percentiles. Risk-equivalent age—when someone with a given PHS percentile has prostate cancer risk equivalent to an average 50-year-old man (50-years-standard risk)—was derived from PHS and incidence data. Positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was calculated using PHS-adjusted age groups. Results: The expected age at diagnosis of clinically significant prostate cancer differs by 19 years between the 1st and 99th PHS percentiles: men with PHS in the 1st and 99th percentiles reach the 50-years-standard risk level at ages 60 and 41, respectively. PPV of PSA was higher for men with higher PHS-adjusted age. Conclusions: PHS provides individualized estimates of risk-equivalent age for clinically significant prostate cancer. Screening initiation could be adjusted by a man’s PHS. Impact: Personalized genetic risk assessments could inform prostate cancer screening decisions
    • …
    corecore