282 research outputs found

    Improvement and implementation of a national individual care plan in paediatric palliative care: a study protocol

    Get PDF
    INTRODUCTION: Paediatric palliative care (PPC) is care for children with life-threatening or life-limiting conditions, and can involve complex high-tech care, which can last for months or years. In 2015, the National Individual Care Plan (ICP) for PPC was developed and has shown to be successful. The ICP can be seen as an instrument to facilitate coordination, quality and continuity of PPC. However, in practice, an ICP is often completed too late and for too few children. We aim to improve the coordination, quality and continuity of care for every child with a life-threatening or life-limiting condition and his/her family by further developing and implementing the ICP in the Netherlands. METHODS AND ANALYSIS: To evaluate the original ICP, ICP 1.0, interviews and questionnaires will be held among parents of children who have or have had an ICP 1.0 and healthcare professionals (HCPs) who used ICP 1.0. Based on the results, ICP 1.0 will be further developed. An implementation strategy will be written and the renewed ICP, ICP 2.0, will be nationally tested in an implementation period of approximately 7 months. During the implementation period, ICP 2.0 will be used for all children who are registered with Children’s Palliative Care teams. After the implementation period, ICP 2.0 will be evaluated using interviews and questionnaires among parents of children who received ICP 2.0 and HPCs who worked with ICP 2.0. Based on these results, ICP 2.0 will be further optimised into the final version: ICP 3.0. ETHICS AND DISSEMINATION: This study received ethical approval. The ICP 3.0 will be disseminated through the Dutch Centre of Expertise in Children’s Palliative Care, to ensure wide availability for the general public and HCPs within PPC. Additionally, we aim to publish study results in open-access, peer-reviewed journals and to present results at national and international scientific meetings

    Content analysis of Advance Directives completed by patients with advanced cancer as part of an Advance Care Planning intervention: insights gained from the ACTION trial

    Get PDF
    Purpose: Writing an Advance Directive (AD) is often seen as a part of Advance Care Planning (ACP). ADs may include specific preferences regarding future care and treatment and information that provides a context for healthcare professionals and relatives in case they have to make decisions for the patient. The aim of this study was to get insight into the content of ADs as completed by patients with advanced cancer who participated in ACP conversations. Methods: A mixed methods study involving content analysis and descriptive statistics was used to describe the content of completed My Preferences forms, an AD used in the intervention arm of the ACTION trial, testing the effectiveness of the ACTION Respecting Choices ACP intervention. Results: In total, 33% of 442 patients who received the ACTION RC ACP intervention completed a My Preferences form. Document completion varied per country: 10.4% (United Kingdom), 20.6% (Denmark), 29.2% (Belgium), 41.7% (the Netherlands), 61.3% (Italy) and 63.9% (Slovenia). Content analysis showed that \u2018maintaining normal life\u2019 and \u2018experiencing meaningful relationships\u2019 were important for patients to live well. Fears and worries mainly concerned disease progression, pain or becoming dependent. Patients hoped for prolongation of life and to be looked after by healthcare professionals. Most patients preferred to be resuscitated and 44% of the patients expressed maximizing comfort as their goal of future care. Most patients preferred \u2018home\u2019 as final place of care. Conclusions: My Preferences forms provide some insights into patients\u2019 perspectives and preferences. However, understanding the reasoning behind preferences requires conversations with patients

    Learning from failure

    Get PDF
    We study decentralized learning in organizations. Decentralization is captured through a symmetry constraint on agents’ strategies. Among such attainable strategies, we solve for optimal and equilibrium strategies. We model the organization as a repeated game with imperfectly observable actions. A fixed but unknown subset of action profiles are successes and all other action profiles are failures. The game is played until either there is a success or the time horizon is reached. For any time horizon, including infinity, we demonstrate existence of optimal attainable strategies and show that they are Nash equilibria. For some time horizons, we can solve explicitly for the optimal attainable strategies and show uniqueness. The solution connects the learning behavior of agents to the fundamentals that characterize the organization: Agents in the organization respond more slowly to failure as the future becomes more important, the size of the organization increases and the probability of success decreases.Game theory

    Izu-Bonin-Mariana Rear Arc - The missing half of the subduction factory, 30 March – 30 May 2014

    Get PDF
    International Ocean Discovery Program (IODP) Hole U1436A (proposed Site IBM-4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, 1.5 km west of Ocean Drilling Program (ODP) Site 792, and at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including distinctive black glassy mafic ash layers that may record large-volume eruptions on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layers and enclosing sediments and to better constrain the thickness of the mafic ash layers. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the Izu-Bonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory”; this was because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear part of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf. The stratigraphy at Site U1437 was divided into seven lithostratigraphic units (I–VII) that were distinguished from each other based on the proportions and characteristics of tuffaceous mud/mudstone and interbedded tuff, lapilli tuff, and tuff breccia. The section is much more mud rich than expected, with ~60% tuffaceous mud for the section as a whole (89% in the uppermost 433 m) and high sedimentation rates of 100–260 m/My for the upper 1320 m (Units I–V). The proportion (40%) and grain size of tephra are much smaller than expected for an intra-arc basin, composed half of ash/tuff and half of lapilli tuff of fine grain size (clasts < 3 cm). These were deposited by suspension settling through water and from density currents, in relatively distal settings. Volcanic blocks are only sparsely scattered through the lowermost 25% of the section (Units VI and VII, 1320–1806.5 mbsf), which includes hyaloclastite, in situ quench-fragmented blocks, and a rhyolite peperite intrusion (i.e., proximal deposits). The transition from unconsolidated to lithified rocks occurred progressively; however, sediments were considered lithified from 427 mbsf (top of Hole U1437D) downward. Alteration resulted in destruction of fresh glass from ~750 mbsf downward, but minerals are less altered. Because of the alteration, the deepest biostratigraphic datum was at ~850 mbsf and the deepest paleomagnetic datum was at ~1300 mbsf. Additional age control deeper than this depth is provided by an age range of 10.97–11.85 Ma inferred from a nannofossil assemblage at ~1403 mbsf and a preliminary U-Pb zircon concordia intercept age of 13.6 +1.6/–1.7 Ma, measured postcruise on a rhyolite peperite in Unit VI at ~1390 mbsf. Based on the seismic profiles, the Miocene–Oligocene hiatus (~17–23 Ma) was predicted to lie at ~1250 mbsf, but strata at that depth (Unit V, 1120–1312 mbsf) are much younger (~9 Ma), indicating that we recovered a thicker Neogene section of volcaniclastics and associated igneous rocks than anticipated. Our preliminary interpretation of shipboard geochemistry is that arc-front versus rear-arc sources can be distinguished in the upper, relatively distal 1320 m of section (Units I–V), whereas the lower, proximal 25% of the section (Units VI–VII) may be geochemically heterogeneous, suggesting that the rear-arc magmas only fully compositionally diverged after ~13 Ma

    Expedition 350 summary

    Get PDF
    International Ocean Discovery Program (IODP) Hole U1436A (proposed Site IBM-4GT) lies in the western part of the Izu fore-arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, and 1.5 km west of Ocean Drilling Program (ODP) Site 792, at 1776 meters below sea level (mbsl). It was drilled as a 150 m deep geotechnical test hole for potential future deep drilling (5500 meters below seafloor [mbsf]) at proposed Site IBM-4 using the D/V Chikyu. Core from Site U1436 yielded a rich record of Late Pleistocene explosive volcanism, including a distinctive black glassy mafic ash layer that may record a large-volume subaqueous eruption on the Izu arc front. Because of the importance of this discovery, Site U1436 was drilled in three additional holes (U1436B, U1436C, and U1436D), as part of a contingency operation, in an attempt to get better recovery on the black glassy mafic ash layer and its enclosing sediments and to better constrain its thickness. IODP Site U1437 is located in the Izu rear arc, ~330 km west of the axis of the Izu-Bonin Trench and ~90 km west of the arc-front volcanoes Myojinsho and Myojin Knoll, at 2117 mbsl. The primary scientific objective for Site U1437 was to characterize “the missing half of the subduction factory” because numerous ODP/Integrated Ocean Drilling Program sites had been drilled in the arc-front to fore-arc region (i.e., ODP Site 782A Leg 126), but this was the first site to be drilled in the rear-arc region of the Izu arc. A complete view of the arc system is needed to understand the formation of oceanic arc crust and its evolution into continental crust. Site U1437 on the rear arc had excellent core recovery in Holes U1437B and U1437D, and we succeeded in hanging the longest casing ever in the history of R/V JOIDES Resolution scientific drilling (1085.6 m) in Hole U1437E and cored to 1806.5 mbsf. The stratigraphy at Site U1437 was divided into seven lithostratigraphic units (I–VII) that were distinguished from each other based on the proportions and characteristics of tuffaceous mud/mudstone and interbedded tuff, lapilli-tuff, and tuff-breccia. The section is much more mud rich than expected, with ~60% tuffaceous mud for the section as a whole (89% in the uppermost 433 m) and high sedimentation rates of 100–260 m/My for the upper 1320 m (Units I–V). The proportion (40%) and grain size of volcaniclastics are much smaller than expected for an intra-arc basin, composed half of ash/tuff and half of lapilli-tuff of fine grain size (clasts <3 cm). These volcaniclastics were deposited by suspension settling through water and from density currents, in relatively distal settings. Volcanic blocks are only sparsely scattered through the lowermost 25% of the section (Units VI and VII, 1320–1806.5 mbsf), which includes hyaloclastite, in situ quench-fragmented blocks, and a rhyolite peperite intrusion (i.e., proximal deposits). The transition from unconsolidated to lithified rocks occurred progressively; however, sediments were considered lithified from 427 mbsf (top of Hole U1437D) downward. Alteration resulted in destruction of fresh glass from ~750 mbsf downward, but minerals are less altered. Because of the alteration, the deepest biostratigraphic datum was at ~850 mbsf and the deepest paleomagnetic datum was at ~1300 mbsf. Additional age control deeper than ~1300 mbsf is provided by an age range of 10.97–11.85 Ma inferred from a nannofossil assemblage at ~1403 mbsf and a preliminary U-Pb zircon concordia intercept age of 13.6 +1.6/−1.7 Ma, measured postcruise on a rhyolite peperite in Unit VI at ~1390 mbsf. Based on the seismic profiles, the Miocene–Oligocene hiatus (~17–23 Ma) was predicted to lie at ~1250 mbsf, but strata at that depth (Unit V, 1120–1312 mbsf) are much younger (~9 Ma), indicating that we recovered a thicker Neogene section of volcaniclastics and associated igneous rocks than anticipated. Our preliminary interpretation of shipboard geochemistry of solids is that arc-front versus rear-arc sources can be distinguished for individual intervals in the upper, relatively distal 1320 m of the section (Units I–V), whereas data for the lower, proximal 25% of the section (Units VI–VII) overlap and exceed the compositional fields for Neogene rear-arc seamounts and Quaternary arc-front volcanoes. This suggests that the compositional divergence between arc-front and rear-arc magmas only fully developed after ~13 Ma

    Expedition 350 methods

    Get PDF
    Introduction This chapter of the International Ocean Discovery Program (IODP) Expedition 350 Proceedings volume documents the procedures and tools employed in the various shipboard laboratories of the R/V JOIDES Resolution during Expedition 350. This information applies only to shipboard work described in the Expedition Reports section of this volume. Methods for shore-based analyses of Expedition 350 samples and data will be described in the individual scientific contributions to be published in the open literature or in the Expedition Research Results section of this volume. This section describes procedures and equipment used for drilling, coring, and hole completion; core handling; computation of depth for samples and measurements; and sequence of shipboard analyses. Subsequent sections describe specific laboratory procedures and instruments in more details

    Advance care planning in patients with advanced cancer: A 6-country, cluster-randomised clinical trial

    Get PDF
    Background Advance care planning (ACP) supports individuals to define, discuss, and record goals and preferences for future medical treatment and care. Despite being internationally recommended, randomised clinical trials of ACP in patients with advanced cancer are scarce. Methods and findings To test the implementation of ACP in patients with advanced cancer, we conducted a cluster-randomised trial in 23 hospitals across Belgium, Denmark, Italy, Netherlands, Slovenia, and United Kingdom in 2015–2018. Patients with advanced lung (stage III/IV) or colorectal (stage IV) cancer, WHO performance status 0–3, and at least 3 months life expectancy were eligible. The ACTION Respecting Choices ACP intervention as offered to patients in the intervention arm included scripted ACP conversations between patients, family members, and certified facilitators; standardised leaflets; and standardised advance directives. Control patients received care as usual. Main outcome measures were quality of life (operationalised as European Organisation for Research and Treatment of Cancer [EORTC] emotional functioning) and symptoms. Secondary outcomes were coping, patient satisfaction, shared decision-making, patient involvement in decision-making, inclusion of advance directives (ADs) in hospital files, and use of hospital care. In all, 1,117 patients were included (442 intervention; 675 control), and 809 (72%) completed the 12-week questionnaire. Patients’ age ranged from 18 to 91 years, with a mean of 66; 39% were female. The mean number of ACP conversations per patient was 1.3. Fidelity was 86%. Sixteen percent of patients found ACP conversations distressing. Mean change in patients’ quality of life did not differ between intervention and control groups (T-score −1.8 versus −0.8, p = 0.59), nor did changes in symptoms, coping, patient satisfaction, and shared decision-making. Specialist palliative care (37% versus 27%, p = 0.002) and AD inclusion in hospital files (10% versus 3%, p &lt; 0.001) were more likely in the intervention group. A key limitation of the study is that recruitment rates were lower in intervention than in control hospitals. Conclusions Our results show that quality of life effects were not different between patients who had ACP conversations and those who received usual care. The increased use of specialist palliative care and AD inclusion in hospital files of intervention patients is meaningful and requires further study. Our findings suggest that alternative approaches to support patient-centred end-of-life care in this population are needed

    Clinical and Imaging Determinants of Collateral Status in Patients With Acute Ischemic Stroke in MR CLEAN Trial and Registry

    Get PDF
    Background and Purpose—Collateral circulation status at baseline is associated with functional outcome after ischemic stroke and effect of endovascular treatment. We aimed to identify clinical and imaging determinants that are associated with collateral grade on baseline computed tomography angiography in patients with acute ischemic stroke due to an anterior circulation large vessel occlusion. Methods—Patients included in the MR CLEAN trial (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands; n=500) and MR CLEAN Registry (n=1488) were studied. Collateral status on baseline computed tomography angiography was scored from 0 (absent) to 3 (good). Multivariable ordinal logistic regression analyses were used to test the association of selected determinants with collateral status. Results—In total, 1988 patients were analyzed. Distribution of the collateral status was as follows: absent (7%, n=123), poor (32%, n=596), moderate (39%, n=735), and good (23%, n=422). Associations for a poor collateral status in a multivariable model existed for age (adjusted common odds ratio, 0.92 per 10 years [95% CI, 0.886–0.98]), male (adjusted common odds ratio, 0.64 [95% CI, 0.53–0.76]), blood glucose level (adjusted common odds ratio, 0.97 [95% CI, 0.95–1.00]), and occlusion of the intracranial segment of the internal carotid artery with occlusion of the terminus (adjusted common odds ratio 0.50 [95% CI, 0.41–0.61]). In contrast to previous studies, we did not find an association between cardiovascular risk factors and collateral status. Conclusions—Older age, male sex, high glucose levels, and intracranial internal carotid artery with occlusion of the terminus occlusions are associated with poor computed tomography angiography collateral grades in patients with acute ischemic stroke eligible for endovascular treatment
    • …
    corecore