1,113 research outputs found
Iron and molybdenum valences in double-perovskite (Sr,Nd)2FeMoO6: electron-doping effect
Double perovskite, (Sr1-xNdx)2FeMoO6, was doped with electrons through
partial substitution of divalent Sr by trivalent Nd (0 < x < 0.2). The Fe
valence and the degree of B-site order were probed by 57Fe Mossbauer
spectroscopy. Replacing Sr by Nd increased the fraction of Fe and Mo atoms
occupying wrong sites, i.e. antisite disorder. It had very little effect on the
Fe valence: a small but visible increase in the isomer shift was seen for the
mixed-valent FeII/III atoms occupying the right site indicating a slight
movement towards divalency of these atoms, which was more than counterbalanced
by the increase in the fraction of antisite Fe atoms with III valence state. It
is therefore argued that the bulk of the electron doping is received by
antisite Mo atoms, which - being surrounded by six MoV/VI atoms - prefer the
lower IV/V valence state. Thus under Nd substitution, the charge-neutrality
requirement inflicts a lattice disorder such that low-valent MoIV/V can exist.Comment: 15 pages, 6 figures, to appear in Solid State Commu
Magnetic and transport properties of the spin-state disordered oxide La0.8Sr0.2Co_{1-x}Rh_xO_{3-\delta}
We report measurements and analysis of magnetization, resistivity and
thermopower of polycrystalline samples of the perovskite-type Co/Rh oxide
LaSrCoRhO. This system constitutes a
solid solution for a full range of ,in which the crystal structure changes
from rhombohedral to orthorhombic symmetry with increasing Rh content . The
magnetization data reveal that the magnetic ground state immediately changes
upon Rh substitution from ferromagnetic to paramagnetic with increasing
near 0.25, which is close to the structural phase boundary. We find that one
substituted Rh ion diminishes the saturation moment by 9 , which implies
that one Rh ion makes a few magnetic Co ions nonmagnetic (the low
spin state), and causes disorder in the spin state and the highest occupied
orbital. In this disordered composition (), we find that
the thermopower is anomalously enhanced below 50 K. In particular, the
thermopower of =0.5 is larger by a factor of 10 than those of =0 and 1,
and the temperature coefficient reaches 4 V/K which is as large as
that of heavy-fermion materials such as CeRuSi.Comment: 8 pages, 6 figures, accepted to Phys. Rev.
Deformation, acoustic emission and ultrasound velocity during fatigue tests on paper
We study the evolution of mechanical properties of paper samples during cyclic experiments. The issue is to look at the sample-to-sample variation, and we try to predict the number of loading cycles to failure. We used two concurrent methods to obtain the deformation: the strain was calculated from vertical displacement measured by laser interferometer sensor, as well as, computed by digital image correlation technique from pictures taken each 2s by a camera. Acoustic emission of fracture was also recorded, and an active ultrasonic wave method using piezoelectric transducers is used to follow the viscoelastic behaviour of each sample. We found that a sharp final increase of different variables like deformation, strain rate and fluctuations, are signs of an imminent rupture of the paper. Moreover looking at the evolution of these quantities during the first cycle only is already an indicator about the lifetime of the sample.Peer reviewe
Inner Triplet Corrector Package MQSXA for the LHC
The eight Inner Triplets of the LHC will each house a combined corrector magnet assembly, MQSXA, which comprises a skew quadrupole (MQSX) in line with nested skew octupole (MCOSX), octupole (MCOX), and skew sextupole (MCSSX) windings. These superconducting single-aperture magnet assemblies have a bore of 70 mm diameter, and the complete MQSXA assemblies are 530 mm long, have an outer diameter of 180 mm and an approximate mass of 90 kg. In the Inner Triplets the MQSXA assemblies are flanged to the end plate of the high gradient quadrupoles (MQX). This paper presents the main design features of the MQSXA and the experience gained with the prototype of the nested part of this magnet assembly, which has been built at CERN. The results of the training tests at 4.3 K and 1.9 K together with the cold magnetic measurements are given
Are patterns of lumbar disc degeneration associated with low back pain? New insights based on skipped level disc pathology
Free Papers: Spine ‐ Lumbar: abstract no. 29648INTRODUCTION: The clinical relevance of 'patterns' of disc degeneration of the lumbar spine is unknown. In the setting of multilevel disc degeneration (2 or more levels), this study addressed the clinical implications of skipped level disc degeneration (SLDD) to that of consecutive, multilevel disc degeneration (CMDD) of the lumbar ...poatprin
Atomic layer deposition of metals: Precursors and film growth
The coating of complex three-dimensional structures with ultrathin metal films is of great interest for current technical applications, particularly in microelectronics, as well as for basic research on, for example, photonics or spintronics. While atomic layer deposition (ALD) has become a well-established fabrication method for thin oxide films on such geometries, attempts to develop ALD processes for elemental metal films have met with only mixed success. This can be understood by the lack of suitable precursors for many metals, the difficulty in reducing the metal cations to the metallic state, and the nature of metals as such, in particular their tendency to agglomerate to isolated islands. In this review, we will discuss these three challenges in detail for the example of Cu, for which ALD has been studied extensively due to its importance for microelectronic fabrication processes. Moreover, we give a comprehensive overview over metal ALD, ranging from a short summary of the early research on the ALD of the platinoid metals, which has meanwhile become an established technology, to very recent developments that target the ALD of electropositive metals. Finally, we discuss the most important applications of metal ALD
Cross-Cultural Adaptation and Validation of the Finnish Version of the Michigan Hand Outcomes Questionnaire
Background and Aims: Michigan Hand Outcomes Questionnaire is a widely used patient-reported outcome measure in hand surgery. The aim of this study was to translate and validate the Michigan Hand Outcomes Questionnaire into Finnish for Finnish patients with hand problems following international standards and guidelines. Material and Methods: The original English Michigan Hand Outcomes Questionnaire was translated into Finnish. Altogether, 115 patients completed the Finnish Michigan Hand Outcomes Questionnaire, and reference outcomes: Disabilities of the Arm and Shoulder, EQ-5D 3L and pain intensity on a visual analog scale. Grip and key pinch forces were measured. After 1-2 weeks, 63 patients completed the Finnish Michigan Hand Outcomes Questionnaire the second time. The Michigan Hand Outcomes Questionnaire was analyzed for internal consistency, repeatability, correlations with the reference outcomes, and factor analysis. Results: Cronbach's alpha ranged from 0.90 to 0.97 in all the Michigan Hand Outcomes Questionnaire subscales, showing high internal consistency. The intraclass correlation coefficient showed good to excellent test-retest reliability ranging from 0.66 to 0.91 in all the Michigan Hand Outcomes Questionnaire subscales. In factor analysis, the structure with six subscales was not confirmed. All the subscales correlated with Disabilities of the Arm and Shoulder score, and five subscales correlated with EQ-5D index. Conclusion: The Finnish version of the Michigan Hand Outcomes Questionnaire showed similar properties compared to the original English version and thus can be used as patient-reported outcome measure for Finnish patients with hand problems.Peer reviewe
- …