17 research outputs found

    Anthropocene history of rich fen acidification in W Poland: Causes and indicators of change

    Get PDF
    In the time of the global climate crisis, it is vital to protect and restore peatlands to maintain their functioning as carbon sinks. Otherwise, their transformations may trigger a shift to a carbon source state and further contribute to global warming. In this study, we focused on eutrophication, which resulted in its transition from rich fen to poor fen conditions. The prior aim was to decipher how i) climate, ii) human, and iii) autogenic processes influenced the pathway of peatland changes in the last ca. 250 years. We applied a high-resolution palaeoecological analysis, based mainly on testate amoebae (TA) and plant macroremains. Our results imply that before ca. 1950 CE, dry shifts on the Kazanie fen were generally climate-induced. Later, autogenic processes, human pressure and climate warming synergistically affected the fen, contributing to its transition to poor fen within ca. 30 years. Its establishment not only caused changes in vegetation but also altered TA taxonomic content and resulted in a lower diversity of TA. According to our research M. patella is an incredibly sensitive testate amoeba that after ca. 200 years of presence, disappeared within 2 years due to changes in water and nutrient conditions. As a whole, our study provides a long-term background that is desired in modern conservation studies and might be used to define future restoration targets. It also confirms the already described negative consequences connected with the Anthropocene and not sustainable exploitation of nature.1. Introduction 2. Material and methods 2.1. State of art 2.1.1. Study site 2.1.2. Core retrieval and chronology 2.1.3. Plant macrofossils 2.2. Testate amoebae (TA) 2.3. Statistical analyses and visualization 3. Results and interpretation 3.1. Mire succession: plant macrofossils, testate amoebae, water table and conductivity 3.1.1. Phase I – rich fen; 91–35.5 cm; ca. 1767±45–1982±3 CE 3.1.2. Phase II – poor fen; 35.5–0 cm; ca. 1982±3–2017 CE 3.2. Non-Metric Multidimensional Scaling (NMDS) 4. Discussion 4.1. An abrupt rich to poor fen transition – causes of change 4.2. Quality of testate amoebae indicators of the rich-poor fen transformatio

    Anthropocene history of rich fen acidification in W Poland: causes and indicators of change

    Get PDF
    In the time of the global climate crisis, it is vital to protect and restore peatlands to maintain their functioning as carbon sinks. Otherwise, their transformations may trigger a shift to a carbon source state and further contribute to global warming. In this study, we focused on eutrophication, which resulted in its transition from rich fen to poor fen conditions. The prior aim was to decipher how i) climate, ii) human, and iii) autogenic processes influenced the pathway of peatland changes in the last ca. 250 years. We applied a high-resolution palaeoecological analysis, based mainly on testate amoebae (TA) and plant macroremains. Our results imply that before ca. 1950 CE, dry shifts on the Kazanie fen were generally climate-induced. Later, autogenic processes, human pressure and climate warming synergistically affected the fen, contributing to its transition to poor fen within ca. 30 years. Its establishment not only caused changes in vegetation but also altered TA taxonomic content and resulted in a lower diversity of TA. According to our research M. patella is an incredibly sensitive testate amoeba that after ca. 200 years of presence, disappeared within 2 years due to changes in water and nutrient conditions. As a whole, our study provides a long-term background that is desired in modern conservation studies and might be used to define future restoration targets. It also confirms the already described negative consequences connected with the Anthropocene and not sustainable exploitation of nature.1. Introduction 2. Material and methods 2.1. State of art 2.1.1. Study site 2.1.2. Core retrieval and chronology 2.1.3. Plant macrofossils 2.2. Testate amoebae (TA) 2.3. Statistical analyses and visualization 3. Results and interpretation 3.1. Mire succession: plant macrofossils, testate amoebae, water table and conductivity 3.1.1. Phase I – rich fen; 91–35.5 cm; ca. 1767±45–1982±3 CE 3.1.2. Phase II – poor fen; 35.5–0 cm; ca. 1982±3–2017 CE 3.2. Non-Metric Multidimensional Scaling (NMDS) 4. Discussion 4.1. An abrupt rich to poor fen transition – causes of change 4.2. Quality of testate amoebae indicators of the rich-poor fen transformatio

    The ƚnieĆŒka peatland as a candidate for the Global Boundary Stratotype Section and Point for the Anthropocene series

    Get PDF
    The subalpine, atmospherically fed ƚnieĆŒka peatland, located in the Polish part of the Sudetes, is one of the nominated candidates for the GSSP of the Anthropocene. Data from two profiles, Sn1 (2012) and Sn0 (2020), from this site are critical for distinguishing the proposed epoch, while an additional core Sn2 is presented to support main evidence. The Sn0 archive contains a wide array of critical markers such as plutonium (Pu), radiocarbon (F14C), fly ash particles, Hg and stable C and N isotopes which are consistent with the previously well documented 210Pb/14C dated Sn1 profile, which provides a high-resolution and comprehensive database of trace elements and rare earth elements (REE), Pb isotopes, Pu, Cs, pollen and testate amoebae. The 1952 worldwide appearance of Pu, owing to its global synchronicity and repeatability between the cores, is proposed here as a primary marker of the Anthropocene, supported by the prominent upturn of selected chemostratigraphic and biostratigraphic indicators as well as the appearance of technofossils and artificial radionuclides

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (nĂ©e European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959

    The European Modern Pollen Database (EMPD) project

    Get PDF
    Modern pollen samples provide an invaluable research tool for helping to interpret the quaternary fossil pollen record, allowing investigation of the relationship between pollen as the proxy and the environmental parameters such as vegetation, land-use, and climate that the pollen proxy represents. The European Modern Pollen Database (EMPD) is a new initiative within the European Pollen Database (EPD) to establish a publicly accessible repository of modern (surface sample) pollen data. This new database will complement the EPD, which at present holds only fossil sedimentary pollen data. The EMPD is freely available online to the scientific community and currently has information on almost 5,000 pollen samples from throughout the Euro-Siberian and Mediterranean regions, contributed by over 40 individuals and research groups. Here we describe how the EMPD was constructed, the various tables and their fields, problems and errors, quality controls, and continuing efforts to improve the available data
    corecore