9 research outputs found

    Diastolic dysfunction and left atrial volume A population-based study

    Get PDF
    ObjectivesWe examined the association between diastolic function and left atrial volume indexed to body surface area (LAVi) in a population-based study.BackgroundAtrial enlargement has been suggested as a marker of the severity and duration of diastolic dysfunction (DD). However, the association between DD and atrial enlargement and their individual prognostic implications in the population is poorly defined.MethodsA cross-sectional sample of Olmsted County, Minnesota, residents ≥45 years of age (n = 2,042) underwent comprehensive Doppler echocardiography and medical record review.ResultsThe LAVi increased with worsening DD: 23 ± 6 ml/m2(normal), 25 ± 8 ml/m2(grade I DD), 31 ± 8 ml/m2(grade II DD), 48 ± 12 ml/m2(grades III to IV DD). In bivariate analyses, age, left ventricular mass index, and DD grade were positively associated, whereas female gender and ejection fraction (EF) were inversely associated with LAVi (p < 0.001 for all). When controlling for age, gender, cardiovascular (CV) disease, EF, and left ventricular mass, grade II DD was associated with a 24%, and grade III to IV DD was associated with a 62% larger LA volume (p < 0.0001 for both). The area under the receiver-operator characteristic curve for LAVi to detect grade I, grade II, or grade III to IV DD was 0.57, 0.81, and 0.98, respectively. Both DD and LAVi were predictive of all-cause mortality, but when controlling for DD, LAVi was not an independent predictor of mortality.ConclusionsThese data suggest that DD contributes to LA remodeling. Indeed, DD is a stronger predictor of mortality; presumably it better reflects the impact of CV disease within the general population

    Plant responses to elevated CO2 levels in soils: distinct CO2 and O2-depletion effects

    Get PDF
    To investigate potential environmental effects in the context of carbon dioxide (CO2) leakage from Carbon Capture and Storage (CCS) schemes, the University of Nottingham ASGARD (Artificial Soil Gassing And Response Detection) facility, was used to inject CO2 into the soil in replicated open-air field plots over several seasons to measure the effects on UK crop species. However, this system lacked a way of distinguishing the concomitant effects of oxygen (O2)-depletion (occurring as a consequence of high CO2 levels in the soil). As plants are aerobic, they require O2 for functional integrity of root processes. Here a complementary laboratory system was used to specifically identify distinct CO2 and O2-depletion effects on two crop species, beetroot and wheat. Parameters measured (photosynthetic rate, transpiration rate, stomatal conductance and biomass) between CO2-gassed, nitrogen (N2)-gassed (O2-depletion control) and non-gassed control plants showed distinct differences in response to CO2 gassing and O2-depletion. Differences between field and laboratory studies illustrate effects of variable meteorological conditions in the field, whilst more stable laboratory conditions show differences between crop species. Results show that the interactions of these two stresses (very high soil CO2 and O2 depletion) on crop physiology are discrete and complex

    Effects of elevated soil CO2 concentration on growth and competition in a grass-clover mix

    Get PDF
    To investigate potential environmental affects in the context of carbon dioxide (CO2) leakage from Carbon Capture and Storage (CCS) schemes. The ASGARD (Artificial Soil Gassing and Response Detection) facility was established, where CO2 can be injected into the soil in replicated open-air field plots. Eight plots were sown with a grass-clover mix, with four selected for CO2 treatment while four were left as controls. Observations of sward productivity throughout the study allowed three effects to be distinguished: a direct stress response to soil gassing, limiting productivity in both species but with a greater effect on the clover; competition between the grass and clover affected by their differential stress responses; and an overall temporal trend from dominance by clover to dominance by grass in CO2 treatments. The direct effect of soil CO2 (or associated oxygen (O2) deprivation due to the high levels of CO2 in the soil) gave estimated reductions in productivity of 42% and 41% in grass, compared to 66% and 32% for clover in the high and low CO2 gassed zones respectively. Canopy CO2 increased by 70 parts per million (ppm) for every 1% increase in soil CO2 and a significant positive response of stomatal conductance in clover was observed; although carbon acquisition by the plants should not therefore be impeded, the reduction in productivity of the gassed plants is indicative of carbon-based metabolic costs probably related to soil CO2 affecting root physiology. Biomass measurements made after gassing has ceased indicated that recovery of vegetation was close to complete after 12 months
    corecore