48 research outputs found

    Prevalence and molecular characterization of C. pecorum detected in Swiss fattening pigs

    Full text link
    Chlamydia (C.) pecorum, an obligate intracellular bacterial species commonly found in ruminants, can also occur in pigs. However, its significance as a potential porcine pathogen, or commensal, is still unclear. In a previous study (Hoffmann et al. 2015), mixed infections of C. suis and C. pecorum were detected in 14 Swiss fattening pig farms. Using these samples, we aimed to investigate the infection dynamics of C. suis and C. pecorum mixed infections in these farms. In addition, we analyzed the genetic diversity of Swiss porcine C. pecorum strains in relation to globally circulating strains. In total, 1284 conjunctival and rectal swabs from 391 pigs, collected at the beginning and end of the fattening period, were tested during the course of this study. We determined the bacterial loads of C. suis and C. pecorum using species-specific real-time PCR (qPCR) and compared these results to already existing DNA-microarray and Chlamydiaceae qPCR data. Overall, C. suis and Chlamydiaceae copy numbers decreased in the course of the fattening period, whereas C. pecorum copy numbers increased. No association was found between clinical signs (conjunctivitis, lameness and diarrhea) and the bacterial loads. Preventive antibiotic treatment at the beginning of the fattening period significantly lowered the chlamydial load and outdoor access was associated with higher loads. Proximity to the nearest ruminants correlated with increased C. pecorum loads, indicating that C. pecorum could be transmitted from ruminants to pigs. Multi-locus sequence typing (MLST) and major outer membrane protein (ompA) genotyping revealed two novel sequence types (STs) (301, 302) and seven unique ompA genotypes (1-7) that appear to form a specific clade separate from other European C. pecorum strain

    Prevalence of chlamydial infections in fattening pigs and their influencing factors

    Get PDF
    Chlamydial infections in pigs are associated with respiratory disease, diarrhea, conjunctivitis and other pathologies. The aim of this study was to define the prevalence of Chlamydiaceae in Swiss fattening pigs by applying sensitive and specific detection methods and to correlate prior antibiotic treatment and farm related factors with differences in prevalence. Conjunctival and fecal swabs were collected from 636 pigs in 29 Swiss fattening pig farms with and without antibiotic treatment, at the beginning and the end of the fattening period. The swabs were screened by real-time PCR for Chlamydiaceae. For the chlamydial detection and species-identification, a DNA-microarray analysis was performed. All farms were positive for Chlamydiaceae with 94.3 and 92.0% prevalence in fecal swabs as well as 45.9 and 32.6% in conjunctival swabs at the first and second time points, respectively. Antibiotic treatment could not clear the infection on herd level. Potential contact with wild boars was a significant risk factor, while hygiene criteria did not influence chlamydial prevalence. A correlation of chlamydial positivity to diarrhea, but not to conjunctivitis was evident. Chlamydia suis was the predominant species. Mixed infections with C. suis and C. pecorum were common, with a substantial increase in C. pecorum positivity at the end of the fattening period, and this finding was associated with ruminant contact. C. abortus was detected in one conjunctival swab. In this study, C. suis inhabited the intestinal tract of nearly all examined pigs, implying a long-term infection. C. pecorum was also common and might be transmitted to pigs by ruminants

    Beyond frequency: Evaluating the validity of assessing the context, duration, ability and botherement of depression and anxiety symptoms in south Brazil

    Get PDF
    Assessment tools for depression and anxiety usually inquire about frequency of symptoms. However, evidence suggests that different question framings might trigger different responses. Our aim is to test if asking about symptom’s context, ability, duration and botherement adds validity to PHQ-9, GAD-7 and PROMIS depression and anxiety. Participants came from two cross-sectional convenience-sampled surveys (N=1,871) of adults (66% females, aged 33.4 ± 13.2), weighted to approximate with the state-level population. We examined measurement invariance across the different question frames, estimated whether framing affected mean scores, and tested their independent validity using covariate-adjusted and sample-weighted structural equation models. Validity was tested using tools assessing general disability, alcohol use, loneliness, well-being, grit, and frequency-based questions from depression and anxiety questionnaires. A bifactor model was applied to test the internal consistency of the question-frames under the presence of a general factor (i.e., depression or anxiety). Measurement invariance was supported across the different frames. Framing questions as ability (i.e., “how easily
”) produced a higher score, compared with framing by context (i.e., “in which daily situations
”). Construct and criterion validity analysis demonstrate that variance explained using multiple question frames were similar to using only one. We detected a strong overarching factor for each instrument, with little variances left to be explained by the question frame. Therefore, it is unlikely that using different adverbial phrasings can help clinicians and researchers to improve their ability to detect depression or anxiety.Key words: PHQ-9, GAD-7, PROMIS, mental health questionnaire, question frame.<br/

    Seasonal Variations of the Unfolded Atmospheric Neutrino Spectrum with IceCube

    Get PDF

    Mechanical design of the optical modules intended for IceCube-Gen2

    Get PDF
    IceCube-Gen2 is an expansion of the IceCube neutrino observatory at the South Pole that aims to increase the sensitivity to high-energy neutrinos by an order of magnitude. To this end, about 10,000 new optical modules will be installed, instrumenting a fiducial volume of about 8 km3. Two newly developed optical module types increase IceCube’s current sensitivity per module by a factor of three by integrating 16 and 18 newly developed four-inch PMTs in specially designed 12.5-inch diameter pressure vessels. Both designs use conical silicone gel pads to optically couple the PMTs to the pressure vessel to increase photon collection efficiency. The outside portion of gel pads are pre-cast onto each PMT prior to integration, while the interiors are filled and cast after the PMT assemblies are installed in the pressure vessel via a pushing mechanism. This paper presents both the mechanical design, as well as the performance of prototype modules at high pressure (70 MPa) and low temperature (−40∘C), characteristic of the environment inside the South Pole ice

    The next generation neutrino telescope: IceCube-Gen2

    Get PDF
    The IceCube Neutrino Observatory, a cubic-kilometer-scale neutrino detector at the geographic South Pole, has reached a number of milestones in the field of neutrino astrophysics: the discovery of a high-energy astrophysical neutrino flux, the temporal and directional correlation of neutrinos with a flaring blazar, and a steady emission of neutrinos from the direction of an active galaxy of a Seyfert II type and the Milky Way. The next generation neutrino telescope, IceCube-Gen2, currently under development, will consist of three essential components: an array of about 10,000 optical sensors, embedded within approximately 8 cubic kilometers of ice, for detecting neutrinos with energies of TeV and above, with a sensitivity five times greater than that of IceCube; a surface array with scintillation panels and radio antennas targeting air showers; and buried radio antennas distributed over an area of more than 400 square kilometers to significantly enhance the sensitivity of detecting neutrino sources beyond EeV. This contribution describes the design and status of IceCube-Gen2 and discusses the expected sensitivity from the simulations of the optical, surface, and radio components

    Sensitivity of IceCube-Gen2 to measure flavor composition of Astrophysical neutrinos

    Get PDF
    The observation of an astrophysical neutrino flux in IceCube and its detection capability to separate between the different neutrino flavors has led IceCube to constraint the flavor content of this flux. IceCube-Gen2 is the planned extension of the current IceCube detector, which will be about 8 times larger than the current instrumented volume. In this work, we study the sensitivity of IceCube-Gen2 to the astrophysical neutrino flavor composition and investigate its tau neutrino identification capabilities. We apply the IceCube analysis on a simulated IceCube-Gen2 dataset that mimics the High Energy Starting Event (HESE) classification. Reconstructions are performed using sensors that have 3 times higher quantum efficiency and isotropic angular acceptance compared to the current IceCube optical modules. We present the projected sensitivity for 10 years of data on constraining the flavor ratio of the astrophysical neutrino flux at Earth by IceCube-Gen2

    Direction reconstruction performance for IceCube-Gen2 Radio

    Get PDF
    The IceCube-Gen2 facility will extend the energy range of IceCube to ultra-high energies. The key component to detect neutrinos with energies above 10 PeV is a large array of in-ice radio detectors. In previous work, direction reconstruction algorithms using the forward-folding technique have been developed for both shallow (â‰Č20 m) and deep in-ice detectors, and have also been successfully used to reconstruct cosmic rays with ARIANNA. Here, we focus on the reconstruction algorithm for the deep in-ice detector, which was recently introduced in the context of the Radio Neutrino Observatory in Greenland (RNO-G)

    Estimating the coincidence rate between the optical and radio array of IceCube-Gen2

    Get PDF
    The IceCube-Gen2 Neutrino Observatory is proposed to extend the all-flavour energy range of IceCube beyond PeV energies. It will comprise two key components: I) An enlarged 8km3 in-ice optical Cherenkov array to measure the continuation of the IceCube astrophysical neutrino flux and improve IceCube\u27s point source sensitivity above ∌100TeV; and II) A very large in-ice radio array with a surface area of about 500km2. Radio waves propagate through ice with a kilometer-long attenuation length, hence a sparse radio array allows us to instrument a huge volume of ice to achieve a sufficient sensitivity to detect neutrinos with energies above tens of PeV. The different signal topologies for neutrino-induced events measured by the optical and in-ice radio detector - the radio detector is mostly sensitive to the cascades produced in the neutrino interaction, while the optical detector can detect long-ranging muon and tau leptons with high accuracy - yield highly complementary information. When detected in coincidence, these signals will allow us to reconstruct the neutrino energy and arrival direction with high fidelity. Furthermore, if events are detected in coincidence with a sufficient rate, they resemble the unique opportunity to study systematic uncertainties and to cross-calibrate both detector components
    corecore