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Seasonal Variations of the Atmospheric Neutrino Spectrum

1. Introduction

The atmospheric neutrino spectrum imposes, additionally to cosmic air shower physics, the
main background in the measurement of astrophysical neutrinos. Since the observed rate of
atmospheric neutrinos correlates with the atmospheric temperature [1–3], a seasonal variation of
the energy spectrum is expected to occur at energies above approximately 100 GeV [4]. In this
contribution, we present an analysis of the atmospheric muon neutrino spectrum using unfolding
techniques to investigate the detection of seasonal variations from 8 years of IceCube data.

IceCube is a cubic-kilometer neutrino detector installed in the ice at the geographic South Pole
between depths of 1450 m and 2450 m, completed in 2010. Reconstruction of the direction, energy
and flavor of the neutrinos relies on the optical detection of Cherenkov radiation emitted by charged
particles produced in the interactions of neutrinos in the surrounding ice or the nearby bedrock [5].

The majority of the detected neutrinos originates from meson decays in the muonic component
of cosmic ray air showers. Whether these mesons decay directly into muons and neutrinos, or
produce secondary mesons, depends on the local air density of the atmosphere [2]. The resulting
muon neutrino (a`) and anti-neutrino (ā`) flux is given by the integration of the neutrino production
yield over the slant depth - ,

Φa (�a ,Θ, -) = ΦN(�a) ·
-ground∫
0

©« �c→a (-)
1 + �c→a (-) · �a cos(Θ★)

nc () (- ))
+ � →a (-)

1 + � →a (-) · �a cos(Θ★)
n () (- ))

ª®¬ d-, (1)

with the primary cosmic ray fluxΦN(�a) of nucleon N at neutrino energy �a [6]; the quantity �8→a
accounts for decay branching ratios, �8→a for the cross sections; the denominator characterizes the
competition between kaon and pion decays and the production of secondary mesons.

The latter process is favored at critical energies n8 above �a · cos(Θ★) at the zenith angle of
neutrino production Θ★. In this scenario the neutrino spectrum follows a steep power law �−W with
a spectral index of approximately W ≈ 3.7 [2]. Since the critical energy at a given atmospheric
depth is anti-proportional to the air density, it is affected by temperature changes [6]. Hence, the
temperature becomes linearly correlated to the critical energy assuming the atmospheric isothermal
approximation of the ideal gas law. The critical energies for kaons and pions are nc ≈ 125 GeV and
n ≈ 850 GeV [6].

The neutrino flux at South Pole based on theNRLMSISE-00 atmosphericmodel [7] is displayed
in Fig. 1 [4]. As expected, a distinct variation can be observed above the respective critical energies,
further increasing with the neutrino energy.

2. Spectrum Unfolding

The reconstruction of the neutrino energy spectrum relies on the indirect measurement of
neutrino-induced muons by the charged-current interaction inside the ice or the bedrock [8]. How-
ever, these muons are exposed to stochastic energy losses during their propagation through the
detector [9] and in addition, the energy reconstruction is smeared by the limited detector resolution
[8]. The neutrino energy spectrum has to be inferred from the reconstructed muon energy. This

2



P
o
S
(
I
C
R
C
2
0
2
1
)
1
1
5
9

Seasonal Variations of the Atmospheric Neutrino Spectrum

technique is denoted as an inverse problem in unfolding, which is commonly defined by the Fred-
holm integral equation of the first kind [10]. In practice, an adequate algorithm is required to solve
for the discrete problem set,

®6(H) = A(�a , H) ®5 (�a), (2)

where the spectral energy distribution ®5 (�a) of the neutrinos has to be estimated from energy-
dependent detector observables H. The response matrix A(�a , H) accounts for propagation and
detection effects and displays the smearing of the energy estimation.

Figure 1: Ratio of the calculated neutrino flux for
the Austral summer and winter at South Pole for the
zenith region between 90° to 120° compared to the
yearly average [4].

In this analysis, the neutrino energy spec-
trum is determined by the Dortmund Spec-
trum Estimation Algorithm (DSEA) [11–14].
The inverse problem is treated as a multino-
mial classification task that is solved by an ar-
bitrary supervised machine learning classifier.
The classifier’s predictions are accumulated for
each pre-defined energy bin and the estimate is
then updated iteratively to overcome potential
biases. Supplementary regularization methods
within DSEA allow a scaling of the current es-
timate and thus accelerate the convergence be-
havior.

The internal regularization parameters, the
classifier selection and its internal settings are
investigated in a tenfold cross-validation ap-
proach using simulated events from the IceCube
neutrino-generator (NuGen) [15]. These events
are generated with the assumption of an �−2

power-law neutrino flux and are weighted to the
atmospheric neutrino flux model Honda2006
[16] to compensate for an over-representation of high energy events in the simulation sample. The
optimization procedure yields the most accurate spectrum approximation measured by the Wasser-
stein Distance [17] with a default random forest classifier [18] in combination with exponential
step-size decay regularization in seven iterations of DSEA.

2.1 Analysis Scheme

The seasonal spectra are obtained in ten logarithmic energy bins between 125 GeV and 10 TeV.
Over- and underflow bins account for events outside of the respective interval. Multiple combina-
tions of energy-dependent quantities are investigated in terms of acceptable coverage and minimal
bias in 2000 trials of DSEA. The final selection consists of the number of hit DOMs, the number
of direct hits, and the truncated neutrino energy: the number of direct hits is defined assuming
unscattered photons which arrive within a time residual from −15 ns to 75 ns; the truncated energy
is derived from the muon energy loss [9, 19].
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To account for statistical fluctuations in the unfolding, the spectral distributions are bootstrapped
[20, 21]. Each data set is sampled by replacement and deconvolved with optimized DSEA. The final
event spectra are determined by the average over 2000 deconvolutions, so that the standard deviation
approximates the statistical uncertainty of the unfolding. Correcting for the effective detection area,
livetime, and solid angle, the event spectra are transformed into a differential neutrino flux [8].

2.2 Event Selection

To study the seasonal effects on the atmospheric neutrino flux, the diffuse upgoing event sample
which contains upward moving muons, as described in Ref. [22], is divided into separate seasons.
The analysis is developed using 10% of the data taken between January 2011 and December 2018.
Only events from the Southern Hemisphere in the zenith range from 90° to 120° are selected,
excluding tropical latitudes between 120° to 135°. This results in a total of 35 038 events within
278 days of livetime, corresponding to approx. 3000 events per month.

2.3 Systematic Uncertainties

Since DSEA is trained on simulated events, the unfolded energy spectra are affected by
systematic uncertainties in the detector simulation. The impact of these effects is estimated from
simulations with varied parameters, similar to the approaches presented in [8, 23]. These generated
events are treated as pseudo-data and are sampled according to the atmospheric neutrino flux model
Honda2006 [16]. The ratio of the unfolded spectrum to the reference unfolding with the default
systematic parameters is the systematic uncertainty of the parameter variation. Each uncertainty
is combined in the squared sum for positive and negative deviations to the reference result and the
total systematic uncertainty is given by,

fsys =
√
f2

DOM + f
2
abs + f

2
scat + f2

flux, (3)

with the uncertainty caused by the efficiency of the optical modules fDOM, the absorption and
scattering coefficients of the ice model fabs and fscat, and the atmospheric neutrino flux model
fflux.

Monte Carlo simulations from the same NuGen sample are used for the first three systematic
parameters. The DOM efficiency was scaled by ±10% [5]. Propagation effects of photons in the
ice are described by absorption and scattering coefficients. The simulated events are obtained from
the SpiceLea ice model, which accounts for the depth-dependence of both coefficients [24] and
anisotropies in the GH-plane of the detection volume [25]. The dependence of both coefficients on
one another are taken into account by a joint reduction of −7% as a lower bound for absorption and
scattering. The upper bound is then determined for each parameter individually, increasing each by
+10%. The uncertainties induced by the ice model coefficients can be combined by Eq. (3) into a
total uncertainty of photon propagation effects.

Since the simulated events are weighted to a flux model for the algorithm optimization and
determination of the systematic uncertainties, the flux model imposes an additional uncertainty on
the unfolded spectra. To estimate the impact of flux model uncertainties on the unfolded spectrum,
the reference simulation is weighted according to the lower and upper flux limits. As illustrated in
Ref. [16], the flux uncertainty scales linearly from 100 GeV to 1 TeV assuming an uncertainty of
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14% at 100 GeV and 25% at 1 TeV. The uncertainty remains approximately constant at energies
between 1 TeV to 10 TeV.

To obtain an absolute measurement of seasonal neutrino fluxes, other sources of systematic
uncertainties, such as assumptions about the primary cosmic ray spectrum, would have to be
considered. However, since the central aim is to determine the seasonal variations with respect to
the annual mean of the neutrino flux, the model independence of deconvolution is exploited and
the variations are measured relatively to the annual mean. Assuming that the investigated detector
systematics remain constant throughout the year, merely the propagation of statistical uncertainties
impacts the flux deviation to the yearly average.

3. Results

The unfolded energy spectra for Austral summer and winter are displayed in Fig. 2(a). Both
spectra agreewithin the uncertainties. Comparing the seasonal fluxes to the annualmean, a tendency
towards an increased flux for the period from December to February is observable. The flux for the
period from June to August remains smaller accordingly. A deviation around 1 TeV might be due
to artifacts in the training sample. This was investigated in deconvolutions of monthly data sets.
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102 103 104

2 × 10 2

3 × 10 2

4 × 10 2

E3  d
/d

E 
 [G

eV
2  c

m
2 s

1 s
r

1 ]

IceCube Preliminary

Unfolding of 10% of the data taken 
 between  2011 - 2018

Mar-Apr
Sep-Oct

102 103 104

log(E/GeV)

0.9
1.0
1.1

ra
tio

 to
 

 y
ea

rly
 

 a
ve

ra
ge

(b) Austral spring and autumn

Figure 2: Unfolded seasonal muon neutrino spectra with statistical and systematic uncertainties using 10% of
the muon neutrino data from IceCube between 2011 and 2018 for the zenith range between 90° to 120°. The
ratio to the unfolded flux averaged over all seasons is displayed below neglecting systematic uncertainties.
First tendencies towards an increased flux in the Austral summer from December to February is observable
despite large statistical uncertainties. The spectra for autumn and spring, on the other hand, are in agreement
with the annual mean.

The unfolded spectra for the Austral spring and autumn are displayed in Fig. 2(b) as a test of
the unfolding method. Since both seasons should have similar temperature profiles, both spectra
are expected to be in agreement. The data sets are constructed from events within two months from
March to April and September to October to provide a clear demarcation between seasons. The
seasonal energy spectra agree within the uncertainties and with the annual mean unfolded neutrino
flux.
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After the discussion of the unfolded spectra obtained from 10% of the data taken from 2011
to 2018, the detection potential of seasonal variations using the complete data set is investigated
on Monte Carlo simulations. For this, the simulated neutrino events are sampled according to
the seasonal flux model presented in Ref. [4]. The number of events and the livetime of both
pseudo-data sets were increased by a factor of ten. The deconvolved spectra are denoted in Fig. 3
with the associated uncertainties. Compared to the tests on 10% of the data taken between 2011 and
2018, the uncertainties decrease significantly and the relationship of the seasonal neutrino fluxes to
each other can be clearly observed below. This estimation yields a deviation of approx. 2% to 8%
between the Austral summer and winter.
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Figure 3: Estimation of the unfolded seasonal spectra for the Austral summer and winter using all events
from 2011 to 2018 as pseudo-data. Two sets are constructed by the Monte Carlo simulation weighted to the
seasonal prediction from Ref. [4]; scaling the number of events and livetime by a factor of ten. Both sets are
then unfolded with DSEA and scaled to a differential flux. The ratio between the seasonal unfolded fluxes is
displayed below in terms of statistical uncertainties.

4. Conclusion and Outlook

The presented analysis holds a great potential for detecting seasonal variations of the atmo-
spheric neutrino energy spectrum with IceCube data. Initial tendencies towards an increased flux in
the Austral summer are evident on 10% of the present atmospheric muon neutrino data set including
events from 2011 to 2018. Due to the relative comparison of seasonal energy spectra, the anal-
ysis becomes independent of systematic uncertainties in the detector simulation and other model
assumptions. An extension by a factor of ten to the entire data set would decrease the statistical
uncertainty by the square root of ten, making seasonal variations to the unfolded annual mean flux
more apparent. The sample can be extended to 9 years of data, further decreasing the statistical
uncertainty, in particular at higher energies in the TeV-regime.
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Further improvements of this analysis are in progress. The significance of the of the measured
variations will be determined on 10% of the recorded data. The hypothesis of observing no seasonal
variations with respect to the annual meanwill be investigated for each energy bin and season. Using
the full 9-year data sample will potentially allow measurements of the monthly neutrino spectra
with sufficient statistics for the first time.
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