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The IceCube-Gen2 Neutrino Observatory is proposed to extend the all-flavour energy range of
IceCube beyond PeV energies. It will comprise two key components: I) An enlarged 8 km3 in-ice
optical Cherenkov array to measure the continuation of the IceCube astrophysical neutrino flux and
improve IceCube’s point source sensitivity above ∼ 100 TeV; and II) A very large in-ice radio array
with a surface area of about 500 km2. Radio waves propagate through ice with a kilometer-long
attenuation length, hence a sparse radio array allows us to instrument a huge volume of ice to
achieve a sufficient sensitivity to detect neutrinos with energies above tens of PeV.
The different signal topologies for neutrino-induced events measured by the optical and in-ice radio
detector - the radio detector is mostly sensitive to the cascades produced in the neutrino interaction,
while the optical detector can detect long-ranging muon and tau leptons with high accuracy - yield
highly complementary information. When detected in coincidence, these signals will allow us
to reconstruct the neutrino energy and arrival direction with high fidelity. Furthermore, if events
are detected in coincidence with a sufficient rate, they resemble the unique opportunity to study
systematic uncertainties and to cross-calibrate both detector components.
We present the expected rate of coincidence events for 10 years of operation. Furthermore, we
analyzed possible detector optimizations to increase the coincidence rate.
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Coincidence events with IceCube-Gen2

1. Introduction

Recently, the IceCube Neutrino Observatory found the first direct evidence of TeV neutrino
emission from a nearby active galaxy [1]. However, to identify the sources of ultra-high-energy
cosmic rays (𝐸 ≥ 1018 eV) and study particle acceleration and interactions at those energies,
neutrinos with energies 𝐸 ≥ 10 PeV have to be detected. The IceCube-Gen2 facility aims to
enhance the observatory’s sensitivity to neutrinos at such energies [2]. It will comprise 160
additional strings with optical modules spaced by 240 m with a total instrumented volume of 8 km3

and an array of several hundred, sparsely spaced radio stations covering a surface area of ∼500 km2.
The radio detector is sensitive to the nanosecond-long broadband radio pulses produced by

particle cascades induced by all neutrino interactions as well as by catastrophic energy losses of
muon and tau leptons produced in charge-current interactions during the propagation [3]. To produce
a radio signal above the thermal background, energies above ≳ 1 PeV to 10 PeV are necessary. The
radio emission does not experience any significant scatter and has an attenuation length on the order
of one kilometer. This allows a single radio-antenna station to probe a volume of several cubic
kilometers of ice. In contrast to that, the optical detector is only sensitive to the energy deposit of
particles contained in or passing through the instrumented detector volume.

Due to the different signal topologies between the two detection techniques, coincidence mea-
surements of neutrino interactions with the radio and optical detector yield highly complementary
information which improves the reconstruction of the neutrino properties, in particular their en-
ergy. For example, when a muon neutrino interacts outside the optical detector and then passes
through it, it is possible to determine the neutrino arrival direction to sub-degree accuracy while
the neutrino energy can only be estimated with large uncertainty with the optical array alone. With
the radio detector it will be possible to measure interaction vertex and energy transferred into the
hadronic cascade [4], which will significantly improve the energy reconstruct for primary neutrino.
Besides that, coincidence detections of neutrinos between the radio and optical detector could be
to cross-calibrate the two detectors and lower systematic uncertainties. In this work, we investigate
the potential of coincidence detections of ultra-high-energy (UHE) neutrinos with the radio and
optical detector of IceCube-Gen2.

2. The IceCube-Gen2 radio detector

The design of the IceCube-Gen2 radio detector is informed by the pilot experiments ARIANNA
[5] and ARA [6], which pioneered slightly different detector concepts, as well as RNO-G [4],
currently constructed in Greenland, which combines both concepts. ARIANNA uses “shallow”
antennas deployed a few meters beneath the surface, while ARA deployed “deep” antennas in
200 m deep boreholes. The Gen2 radio detector will utilize shallow and deep antennas in two
different station designs: A shallow station which mostly utilized high-gain LPDA antennas and
a hybrid station that combines the shallow antennas with deep antennas (similar to RNO-G). The
deep antennas are comprised of low-gain vertical and horizontally polarized dipole antennas (Vpols
& Hpols) which can fit in narrow boreholes that reach 150 m deep. Both station types comprise
calibration pulsers and will use the same read-out electronics which is sensitive between about
80 MHz to 620 MHz. A schematic of both station types can be found in Fig. 1. Several array layouts
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Coincidence events with IceCube-Gen2

Figure 1: Preliminary “baseline” array layout (bottom-left) and station designs (top-left: shallow station,
right: hybrid station) of the IceCube-Gen2 radio detector.

with varying numbers of shallow and hybrid stations and different spacings between those are
currently under investigation. Fig. 1 shows the “baseline” layout which features 164 hybrid stations
with a spacing of 1.75 km and 197 shallow stations with a spacing of 1.24 km. The hybrid stations
feature a 4-channel phased array on the bottom of the “power string” (cf. Fig. 1). The signals of the
4 Vpol antennas are constantly phased in several beams sensitive to different directions in zenith.
This will increase the signal-to-noise ratio for correlated signals arriving from those directions at
the antennas while suppressing thermal noise fluctuations. This concept has been developed and
tested by ARA [7].

3. Simulating radio-optical coincidence events for IceCube-Gen2

We simulate the neutrino interactions in the ice, the radio emission produced by those in-
teractions, and the instrumental response of the radio detector with the open-source framework
NuRadioMC [8]. For the set of neutrino events that triggered the radio detector, we simulate the
optical “counterpart” using IceCube’s simulation and reconstruction framework IceTray [9].

Neutrino generation: We simulate neutrinos of all flavors with discrete energies between
1016 eV and 1020 eV in bins of log10(Δ𝐸/eV) = 0.5 undergoing charge-current (CC) and neutral-
current (NC) interactions1. The arrival directions are isotopically distributed , and the neutrino
interaction vertices are randomly distributed within a rectangular volume. The height of the
rectangle is 2800 m, i.e., roughly the thickness of the polar ice sheet. The area depends on the
energy, flavor, and interaction type of the event: For all cascade-like events (those not producing
a muon or tau lepton in the first interaction), the considered area is 34 km along the East-West
direction and 50 km along the North-South direction. For track-like events (those with a muon or
tau lepton produced in the first interaction), the area is dynamically increased depending on the

1The ratio between CC and NC interactions is ∼ 70% to 30% which in agreement with their cross-sections.
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Coincidence events with IceCube-Gen2

Figure 2: Left: Normalized distribution of the electromagnetic-equivalent energy deposit. As in the following
“Muons” in the label refers to both a` and a`, the same holds for the other flavors. Right: Unweighted scatter
plot of the neutrino interaction vertices for all coincidence events.

zenith angle and energy to allow for all possible vertices from which the track-like leptons could
reach the original rectangular volume defined for the cascade-like events. All produced track-like
leptons are propagated using the PROPOSAL code [10, 11] and their energy losses above 1 PeV,
i.e., those relevant for the emission of radio signals, are stored. Each neutrino event is assigned a
weight 𝑤𝑖 which describes the neutrino’s probability to arrive at the vertex location considering its
trajectory through the Earth and/or ice sheet2. In total, we generated 3.4 · 108 neutrino interactions.

Radio simulation: For each shower produced by a neutrino interaction or lepton, the electric
field vector at every antenna3 within an energy-dependent distance around the shower is calculated.
First, all possible trajectories of the radio emission between the shower and antenna are determined
taking into account refraction and reflection. Then the radio emission produced by the shower at the
antenna location is calculated using a semi-analytic model based on realistic charge-excess profiles
of in-ice particle cascades [12]. Finally, the radio emission received at the antenna is propagated
through the instrumental response of the detector and a trigger is simulated. We simulated two
independent triggers: 1) a 2 out of 4 coincidence amplitude threshold trigger with the 4 downward
facing LPDAs, and 2) a power-integrating threshold trigger on the beam-formed signals of the
4-channel phased array. The trigger thresholds are defined by a maximum trigger rate of 100 Hz
each, simulating thermal noise with a temperature of 300 K. For a general and comprehensive
description of the entire procedure and all steps involved, see [8]. In total, 1.1 · 106 events triggered
the radio detector.

Optical simulations: To simulate triggers of the optical detector, first, we determine if 1) a
cascade-like event is produced within a “fiducial” volume of 150 m around the optical array, or
2) if a track-like lepton intersects with the same fiducial volume. And second, we determined
the electromagnetic-equivalent energy deposited 𝐸deposit, which is proportional to the produced

2This weight does not include the probability of the neutrino to interact but only to have reached the interaction vertex.
3To increase computation time we limit the simulated signals to antennas that are used for triggering.
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Coincidence events with IceCube-Gen2

Cherenkov light [13] inside the fiducial volume4 . Figure 2 (left) shows the normalized distribution
of𝐸deposit separated by flavor (color-coded) and interaction type. The normalization reflects expected
event rate of coincidence events per flavor for the simulated, unrealistically hard energy spectrum.
For each lepton flavor, the deposited energy inside the fiducial volume shows two distinct peaks: one
at TeV energies and one at EeV energies. At high energies, the events are comprised of mostly muon
or tau leptons originating from CC-interactions, that intersect and deposit their energy inside the
fiducial volume. A second component is found from electron-neutrino-induced showers contained
inside the fiducial volume. At lower energies, the observed energy deposits mostly originate from
low-energy secondary muons produced in hadronic cascades (all flavor NC + electron CC events)
that are found outside the detector. Those secondary muons carry only a small fraction (∼ 10−6)
of the initial neutrino energy, and hence, although they originate from the cascades induced by the
highest energy neutrinos, the deposited energy inside the fiducial volume is found at much lower
energies. To determine a trigger condition for the optical detector based on the deposited energy,
we assume that the sensitivity of the Gen2 optical array is similar to that of the current IceCube
Gen1 array. Although the spacing between strings is doubled in Gen2, the efficiency of the Gen2
optical modules is expected to improve by a factor of ∼ 3 w.r.t. the Gen1 modules, compensating
for the larger spacing. As such, as a conservative criterion, we require 𝐸deposit > 100 TeV to
consider an event as detectable by the Gen2 optical array. This condition rejects around 25% of
all previously selected events which are mostly made up of the low-energy secondary muons5.
Due to the limitations of the hybrid simulations, the leptons from the initial neutrino interaction
are propagated twice: First in NuRadioMC to simulated (catastrophic) energy losses with energies
above 1 PeV relevant for the radio detector, and again in IceTray to determine if the events trigger the
optical detector. The repeated simulations will be different on an event-by-event level6, which could
potentially bias our results: leptons with stronger energy losses (before entering the optical detector)
are more likely to trigger the radio detector but less likely to trigger the optical detector. However,
we found no indication for such bias in our results, i.e., in the considered energy range leptons which
undergo strong energy losses will still have enough energy to reach the optical detector. Note, that
this effect would only negatively affect the coincidence rate.

4. Rate of coincidence events

In the following, we analyse 14257 selected coincidence events. Figure 2 (right) shows a map of
all neutrino-interaction vertices together with the positions of the radio stations and optical modules.
The 𝑥− and 𝑦−axis show a histogram of the projected, unweighted distributions. The majority of
coincidence neutrinos have their interaction relatively close to the optical array. Considering only
events with a trigger from the radio hybrid station closest to the optical array accounts for roughly
1/3 of all coincidence events. We can also identify a few events where the interaction vertex is
tens of kilometers away from any radio station. Those are track-like events that have triggered the

4For this calculation we do not take into account the spatial expansion of the cascades.
5The simulation of muons from hadronic cascades uses an energy-independent parameterization, obtained from

CORSIKA simulations at lower energies, which is scaled linearly with energy. This procedure likely underestimates the
number of muons at energies relevant is this work.

6Also, the PROPOSAL version within IceTray is different w.r.t. NuRadioMC.
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Coincidence events with IceCube-Gen2

Figure 3: Per flavor effective volume for coincidence events (solid lines) and radio-only events (dashed lines)
as a function of the energy (left) and zenith angle (right). Colored band represent statistical uncertainties.
Right: Effective volume for coincidence events is multiplied by 30 to allow a better comparison.

radio detector from a catastrophic energy loss of the charged lepton. With the selected coincidence
events we determine the effective volume 𝑉eff which depends on the energy 𝐸 and zenith angle \ of
the primary neutrinos

𝑉eff (𝐸, \) = 𝑉gen(𝐸, \)
∑𝑛coinc (𝐸,\ )

𝑖
𝑤𝑖

𝑛gen(𝐸, \)
. (1)

The index “gen” refers to the number of generated neutrino interactions and the volume in which
they are generated. The energy bins are that of the simulated neutrinos, the zenith angle bins
are equidistant in cos \ with a width of 0.1. The effective volume per flavor as a function of the
energy averaged over all arrival directions is shown in Fig. 3 (left). The solid lines indicate the
here-derived effective volume for coincidence events while the dashed lines show the effective
volume for all triggered radio-only events from [14]. The error bands show the 68% statistical
uncertainty according to the Feldman-Cousins method [15]. At lower energies, muon neutrinos
provide the highest sensitivity because the muons propagate the furthest through the ice while taus
decay after a while. At higher energies, taus exceed muons in range. Since electron neutrinos have
to interact inside the optical detector their effective volume is much reduced, and there is a higher
energy threshold for the detection because the radio emission has to reach the nearest radio antennas
from the deep optical array. On the right side of Figure 3 the effective volume as a function of the
arrival direction, i.e., averaged over all energies, is shown. The effective volume for coincidence
events is scaled by a constant arbitrary factor to allow a better comparison with the result for
radio-only events. For both event sets, the highest sensitivity is just above the horizon. Below
the horizon, the survival probability for neutrinos passing through the Earth limits the sensitivity.
For vertical arrival directions the lower target mass in front of the antennas limits the sensitivity.
For coincidence events, the additional geometrical constrain that the leptons have to intersect with
the optical detector volume reduces the sensitivity for vertical events further. With the estimated
effective volume, we can now derive a flux sensitivity limit ΦUL(𝐸) for a given live time 𝑡live and
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Coincidence events with IceCube-Gen2

Figure 4: Left: Single flavor sensitivity to a diffuse emission for coincidence (dashed lines) and radio-only
(solid lines) events. The flux limit is compared to different flux predictions. Right: Expected instantaneous
sensitivity for coincidence events and neutrino fluence (a` + a𝜏) for two different source classes.

energy range Δ
(
log10 𝐸

)
ΦUL(𝐸) =

2.44
4𝜋 [𝑉eff (𝐸)/𝐿int(𝐸)] 𝑡live log(10) Δ

(
log10 𝐸

)
𝐸
. (2)

The interaction length of neutrinos 𝐿int(𝐸) in ice is determined using the parameterization of the
cross-section from [16]. The 2.44 counts reflect the 90% confidence interval after the Feldman-
Cousins method. The term 4𝜋𝑉eff (𝐸)/𝐿int(𝐸) can be interpreted as the effective area which is
commonly used by other neutrino telescopes. Figure 4 (left) shows the sensitivity per flavor, 10
years of operation, and a full decade in energy for radio-only and coincidence events. Those limits
are compared to the flux detected by IceCube which is extrapolated to higher energies [17], as well
as a model for cosmogenic neutrinos [18] and the limit obtained from the IceCube extremely-high-
energy neutrino search using 9 years of data [19]. For the two flux models, we expect 0.2 neutrinos
each integrated over all energies and flavors. Hence, the sensitivity is most likely not sufficient to
observe coincidence events from a diffuse emission within a reasonable time. We also studied the
sensitivity toward transient event classes. In Figure 4 (right) the prediction of the neutrino fluence
from two different source classes for muon and tau neutrinos is shown together with the sensitivity
of Gen2 for coincidence events in different zenith angle bands. The shaded bands describe the
expected azimuthal asymmetry in the sensitivity which is around ±25% for muon and tau neutrinos
with a maximum for neutrinos coming from the West. For the chosen source classes the sensitivity
is likely too low to see neutrinos in coincidence.

5. Conclusion & Discussion

The sensitivity of IceCube-Gen2 for coincidence events between the radio and optical detector
is likely too low to observe those events in the simulated configuration. Therefore, in the following
we discuss how the sensitivity can be improved. Just above the horizon, the contribution from radio
triggers of the deep and shallow station components is about equal, while events which have radio

7
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Coincidence events with IceCube-Gen2

triggers in both components dominate7. At more down-going geometries, radio triggers for the
deep component dominate, while just below the horizon the shallow component triggers contribute
more. Overall, for the chosen array layout the deep triggers have a higher contribution. We repeated
this analysis with simulations of an alternative radio detector layout (“hex-shallow” cf. [14]) which
features more stations with a higher fraction of shallow stations (123 hybrid stations on 2 km hex.
grid, 414 shallow stations on 1 km hex. grid). We found no noteworthy difference in the results
presented here. Installing antennas deeper as currently planned, i.e., at depths of 200 to 400 meters
or even deeper [20], will improve the coincidence rate. However, to exactly quantify the effect we
would need new simulations which is out of the scope of this analysis. As mentioned earlier, the
radio station (hybrid) closest to the optical detector has a large contribution to the overall sensitivity.
It is easy to imagine that the current arrangement between the radio and optical array is not optimal.
Ideally the optical detector would be central within the radio array. Due to constraints at the South
Pole, this is not possible. However, to test the (all)most optimal scenario, we simulated such a
configuration. The overall sensitivity improved by a factor of 2 - 3, a substantial but not sufficient
improvement to detect a significant number of neutrinos. As mentioned before, the applied trigger
condition for the optical detector is conservative. It is likely, that energy threshold can be lowered
considerably which increases the aperture for hadronic cascades outside of the optical detector as
well as skimming track events. However, the accurate determination of the detection threshold
demands simulations which comprise among other things a more precise modelling of hadronic
cascades and photon propagation. By increasing the sensitivity of the radio detector we expect to
see, to first order, the same improvements in the coincidence rate. This could be accomplished in
two ways: First, by increasing radio trigger rates which translate into the observation of weaker
signals, for at least the closest radio station(s). Second, by developing smart algorithms which,
at trigger level, can discriminate between thermal noise the dominant background and neutrino-
induced signals. Currently, such an algorithm is developed for RNO-G [21]. However, even with a
significant improvement of the coincidence sensitivity a detection would require an optimistic flux
expectation of a cosmogenic neutrino beam.
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