24 research outputs found

    Carbon sequestration and soil aggregation in center-pivot irrigated and dryland cultivated farming systems

    Get PDF
    Although irrigation is considered a beneficiary management for increasing soil organic C (SOC) stocks in (semi)arid environments, our understanding of the impact of irrigation on soil organic matter (SOM) dynamics in the field remains limited. We investigated the effect of irrigation on soil C storage in relation to soil aggregation by measuring C stocks of bulk soil and different aggreagate fractions in the top 20-cm layer of center-pivot irrigated vs. dryland farming systems in semiarid southwestern Nebraska. The irrigated fields (IRR) showed increased C inputs and larger SOC stocks than the dryland cultivated fields (DRY). Fractionation of bulk soil samples into non-microaggregate-associated particulate organic matter (free POM) and microaggregate-associated POM, silt, and clay fractions indicated that the larger bulk SOC stock under IRR was explained solely by an increase in microaggregate-associated C storage. Wet sieving of bulk soil showed that microaggregation was remarkably low under DRY and did not increase under IRR, suggesting that the protection of microaggregates inside macroaggregates was no prerequisite for C sequestration under IRR. The results of this study confirm the potential of irrigation to increase soil C stocks through preferential sequestration of C inside microaggregates, but question our understanding of the mechanisms underlying this preferential sequestration

    Belowground biota responses to maize biochar addition to the soil of a Mediterranean vineyard

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552Biochar is a high carbon material resulting from biomass pyrolysis that, when applied to croplands, can increase soil carbon and soil water retention. Both effects are of critical importance in semi-arid regions, where carbon decline and desertification are the main drivers of soil degradation. Since most environmental services provided by soil are mediated by belowground biota, effects of biochar on soil microbial and invertebrate communities must be evaluated under field conditions before its agricultural application can be recommended. We tested maize biochar for its mid-term effect on soil microbes and micro-arthropods of a Mediterranean vineyard. We applied biochar to three field plots with neutral sandy loam soils at a dose of 5 Mg ha−1. During two years, we monitored the abundance of functional groups of soil micro-arthropods and estimated the biomass of soil microbial groups. We also analyzed the δ13C value of microbial PLFA biomarkers to determine biochar-C utilization by each microbial group taking advantage of the δ13C natural abundance differences between the applied biochar and the soil. Biochar addition significantly reduced soil microbial biomass but did not alter the functional microbial diversity nor the abundance or biodiversity of soil micro-arthropods. The contribution of biochar-C to the diet of most microbial groups was very low through the monitoring period. However, two gram-negative bacterial groups increased their biochar-derived carbon uptake under extreme soil dryness, which suggests that biochar-C might help soil microbes to overcome the food shortage caused by drought. The decrease in microbial biomass observed in our experiment and the concomitant decrease of SOM mineralization could contribute to the carbon sequestration potential of Mediterranean soils after biochar addition

    Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought

    Get PDF
    The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition. We used a pulse-chase 13C labeling experiment with compound-specific stable-isotope probing to investigate the importance of rhizodeposit C to deep soil microbial biomass under two switchgrass ecotypes (Panicum virgatum L., Kanlow and Summer) with contrasting root morphology. We quantified root phenology, soil microbial biomass (phospholipid fatty acids, PLFA), and microbial rhizodeposit uptake (13C-PLFAs) to 150 cm over one year during a severe drought. The lowland ecotype, Kanlow, had two times more root biomass with a coarser root system compared to the upland ecotype, Summer. Over the drought, Kanlow lost 78% of its root biomass, while Summer lost only 60%. Rhizosphere microbial communities associated with both ecotypes were similar. However, rhizodeposit uptake under Kanlow had a higher relative abundance of gram-negative bacteria (44.1%), and Summer rhizodeposit uptake was primarily in saprotrophic fungi (48.5%). Both microbial community composition and rhizodeposit uptake shifted over the drought into gram-positive communities. Rhizosphere soil C was greater one year later under Kanlow due to turnover of unlabeled structural root C. Despite a much greater root biomass under Kanlow, rhizosphere δ13C was not significantly different between the two ecotypes, suggesting greater microbial C input under the finer rooted species, Summer, whose microbial associations were predominately saprotrophic fungi. Ecotype specific microbial communities can direct rhizodeposit C flow and C accrual deep in the soil profile and illustrate the importance of the microbial community in plant strategies to survive environmental stress such as drought

    Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought

    Get PDF
    The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition. We used a pulse-chase 13C labeling experiment with compound-specific stable-isotope probing to investigate the importance of rhizodeposit C to deep soil microbial biomass under two switchgrass ecotypes (Panicum virgatum L., Kanlow and Summer) with contrasting root morphology. We quantified root phenology, soil microbial biomass (phospholipid fatty acids, PLFA), and microbial rhizodeposit uptake (13C-PLFAs) to 150 cm over one year during a severe drought. The lowland ecotype, Kanlow, had two times more root biomass with a coarser root system compared to the upland ecotype, Summer. Over the drought, Kanlow lost 78% of its root biomass, while Summer lost only 60%. Rhizosphere microbial communities associated with both ecotypes were similar. However, rhizodeposit uptake under Kanlow had a higher relative abundance of gram-negative bacteria (44.1%), and Summer rhizodeposit uptake was primarily in saprotrophic fungi (48.5%). Both microbial community composition and rhizodeposit uptake shifted over the drought into gram-positive communities. Rhizosphere soil C was greater one year later under Kanlow due to turnover of unlabeled structural root C. Despite a much greater root biomass under Kanlow, rhizosphere δ13C was not significantly different between the two ecotypes, suggesting greater microbial C input under the finer rooted species, Summer, whose microbial associations were predominately saprotrophic fungi. Ecotype specific microbial communities can direct rhizodeposit C flow and C accrual deep in the soil profile and illustrate the importance of the microbial community in plant strategies to survive environmental stress such as drought

    Cheatgrass-Associated AMF Community Negatively Affects Sagebrush Root Production but Not C Transfer to the Soil

    No full text
    Aim Cheatgrass (Bromus tectorum) invasion can alter community structure of arbuscular mycorrhizal fungi (AMF) in the sagebrush-steppe ecosystem. The feedbacks and underlying mechanisms of a changed AMF community on sagebrush (Artemisia tridentate ssp. wyomingensis) remain unclear. We assessed how ‘own’ versus ‘foreign’ AMF impact plant biomass, C transfer to AMF, and decomposition rates. Methods To evaluate the impact of different AMF communities on plant biomass and C transfer, sagebrush and cheatgrass were grown in sterilized soil amended with ‘own’ or ‘foreign’ AMF. Sagebrush plants were labeled with 13C-CO2 to assess changes in allocation of C belowground (13C-PLFA & NLFA) and decomposition (soil respired 13C-CO2). Community structure and alpha-diversity of AMF were examined in native and cheatgrass-invaded communities. Results Cheatgrass invasion changed AMF community structure and decreased AMF taxon richness. Sagebrush C transfer and decomposition were not altered, but sagebrush root and cheatgrass shoot production was reduced with ‘foreign’ AMF and no AMF, respectively. Conclusion Our results from the greenhouse experiment suggest that sagebrush performance declines with cheatgrass invasion. This may be caused by a disadvantageous AMF community shift, where ‘foreign’ AMF received the same amount of C but provided fewer benefits to sagebrush, as shown by decreased root biomass. These findings provide insight into the feedback mechanism that may contribute to decreasing native plant performance upon invasion
    corecore