103 research outputs found

    THE ROLE OF THYMOCYTES AND BONE MARROW CELLS IN DEFINING THE RESPONSE TO THE DINITROPHENYL HAPTEN ATTACHED TO POSITIVELY AND NEGATIVELY CHARGED SYNTHETIC POLYPEPTIDE CARRIERS : CELL FRACTIONATION OVER CHARGED COLUMNS

    Get PDF
    An inverse relationship exists between the net electrical charge of immunogens and the antibodies they elicit (1). Results of an earlier study have demonstrated that the net charge phenomenon has a cellular basis, since the immune response potential of murine spleen cells to 2,4-dinitrophenyl (DNP) on a negatively charged synthetic polypeptide carrier was reduced by cell fractionation over negatively charged glass beads, whereas the response to the same hapten on a positively charged carrier was unaffected (14). To verify that the net charge correlation is expressed at the cellular level, spleen cells were fractionated over positively charged poly-L-lysine-coated glass bead columns, and their immunocompetence to DNP on positively and negatively charged carriers was tested by cell transfers in irradiated recipient mice. In this case, the fractionated cells showed reduced response potential to DNP on the positively charged carrier only. Thus, the cellular basis of the net charge phenomenon has been demonstrated for both positively and negatively charged immunogens (for the same specificity) by cell separation techniques over columns of opposite charge. In order to establish whether the cell population relevant for the charge properties of immunogens was of thymus or marrow origin, thymocytes and bone marrow cells were selectively passed over positively or negatively charged columns and mixed with unfractionated cells of the complementary type. Transfers of the filtered and unfiltered cell mixtures in irradiated recipient mice immunized with DNP on either a positive or a negative synthetic polypeptide carrier indicated that fractionation of thymocytes, but not of marrow cells, correlated with the spleen population. Thus, thymocytes fractionated over negatively charged columns and mixed with unfractionated marrow cells exhibited reduced response to DNP on the negative carrier, but normal responses to DNP on the positive carrier. The opposite result was obtained when thymocytes were passed over positively charged columns. No effect on the anti-DNP response was detected by filtration of bone marrow cells over columns of either charge. These findings indicate that it is possible to distinguish between thymocytes on the basis of their capacity to react with more acidic or more basic surfaces and that a population of thymus-derived cells may recognize immunogens on the basis of their overall electrical charge. No evidence was found by these techniques that marrow-derived cells contribute to the net charge phenomenon

    Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation.

    Get PDF
    Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a surface. At present, it is not clear how twitching motility emerges from these initial minimal conditions. Here, we build a simple model for TFP-driven surface motility without complications from viscous and solid friction on surfaces. We discover the unanticipated structural requirement that TFP motors need to have a minimal amount of effective angular rigidity in order for cells to perform the various classes of experimentally-observed motions. Moreover, a surprisingly small number of TFP are needed to recapitulate movement signatures associated with twitching: Two TFP can already produce movements reminiscent of recently observed slingshot type motion. Interestingly, jerky slingshot motions characteristic of twitching motility comprise the transition region between different types of observed crawling behavior in the dynamical phase diagram, such as self-trapped localized motion, 2-D diffusive exploration, and super-diffusive persistent motion

    Dynamics of Cell Area and Force during Spreading

    Get PDF
    AbstractExperiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton

    Arp2/3 Branched Actin Network Mediates Filopodia-Like Bundles Formation In Vitro

    Get PDF
    During cellular migration, regulated actin assembly takes place at the cell leading edge, with continuous disassembly deeper in the cell interior. Actin polymerization at the plasma membrane results in the extension of cellular protrusions in the form of lamellipodia and filopodia. To understand how cells regulate the transformation of lamellipodia into filopodia, and to determine the major factors that control their transition, we studied actin self-assembly in the presence of Arp2/3 complex, WASp-VCA and fascin, the major proteins participating in the assembly of lamellipodia and filopodia. We show that in the early stages of actin polymerization fascin is passive while Arp2/3 mediates the formation of dense and highly branched aster-like networks of actin. Once filaments in the periphery of an aster get long enough, fascin becomes active, linking the filaments into bundles which emanate radially from the aster's surface, resulting in the formation of star-like structures. We show that the number of bundles nucleated per star, as well as their thickness and length, is controlled by the initial concentration of Arp2/3 complex ([Arp2/3]). Specifically, we tested several values of [Arp2/3] and found that for given initial concentrations of actin and fascin, the number of bundles per star, as well as their length and thickness are larger when [Arp2/3] is lower. Our experimental findings can be interpreted and explained using a theoretical scheme which combines Kinetic Monte Carlo simulations for aster growth, with a simple mechanistic model for bundles' formation and growth. According to this model, bundles emerge from the aster's (sparsely branched) surface layer. Bundles begin to form when the bending energy associated with bringing two filaments into contact is compensated by the energetic gain resulting from their fascin linking energy. As time evolves the initially thin and short bundles elongate, thus reducing their bending energy and allowing them to further associate and create thicker bundles, until all actin monomers are consumed. This process is essentially irreversible on the time scale of actin polymerization. Two structural parameters, L, which is proportional to the length of filament tips at the aster periphery and b, the spacing between their origins, dictate the onset of bundling; both depending on [Arp2/3]. Cells may use a similar mechanism to regulate filopodia formation along the cell leading edge. Such a mechanism may allow cells to have control over the localization of filopodia by recruiting specific proteins that regulate filaments length (e.g., Dia2) to specific sites along lamellipodia

    Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries.

    Get PDF
    UNLABELLED: Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE: Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.S.K. was supported by a European Molecular Biology Organization long-term fellowship (ALTF 887-2009). M.P.W is funded by a Wellcome Trust Senior Clinical Fellowship (108070/Z/15/Z). R.J.S. is supported by MRC grant (MR/L008734/1). P.J.L . is supported by a Wellcome Trust Principal Research Fellowship, grant (WT101835). J. S. is supported by MRC Programme grant (G0701279). J.R., L. V. and M.M. are supported by MRC as part of the core funding for the Mitochondrial Biology Unit (MC_U105697135). L.V. is also supported by EMBO (ALFT 701- 2013).This is the final version of the article. It first appeared from the American Society for Microbiology via http://dx.doi.org/10.1128/mBio.00029-1

    Discovery of an unrecognized nidovirus associated with granulomatous hepatitis in rainbow trout

    Get PDF
    Rainbow trout (Oncorhynchus mykiss) is the principal species of inland-farmed fish in the Western hemisphere. Recently, we diagnosed in farmed rainbow trout a disease in which the hallmark is granulomatous-like hepatitis. No biotic agents could be isolated from lesions. Still, unbiased high-throughput sequencing and bioinformatics analyses revealed the presence of a novel piscine nidovirus that we named “Trout Granulomatous Virus” (TGV). TGV genome (28,767 nucleotides long) is predicted to encode non-structural (1a and 1 ab) and structural (S, M, and N) proteins that resemble proteins of other known piscine nidoviruses. High loads of TGV transcripts were detected by quantitative RT-PCR in diseased fish and visualized in hepatic granulomatous sites by fluorescence in situ hybridization. Transmission electron microscopy (TEM) revealed coronavirus-like particles in these lesions. Together, these analyses corroborated the association of TGV with the lesions. The identification and detection of TGV provide means to control TGV spread in trout populations

    Human cytomegalovirus long noncoding RNA4.9 regulates viral DNA replication

    Get PDF
    Viruses are known for their extremely compact genomes composed almost entirely of protein-coding genes. Nonetheless, four long noncoding RNAs (lncRNAs) are encoded by human cytomegalovirus (HCMV). Although these RNAs accumulate to high levels during lytic infection, their functions remain largely unknown. Here, we show that HCMV-encoded lncRNA4.9 localizes to the viral nuclear replication compartment, and that its depletion restricts viral DNA replication and viral growth. RNA4.9 is transcribed from the HCMV origin of replication (oriLyt) and forms an RNA-DNA hybrid (R-loop) through its G+C-rich 5’ end, which may be important for the initiation of viral DNA replication. Furthermore, targeting the RNA4.9 promoter with CRISPR-Cas9 or genetic relocalization of oriLyt leads to reduced levels of the viral single-stranded DNA-binding protein (ssDBP), suggesting that the levels of ssDBP are coupled to the oriLyt activity. We further identified a similar, oriLyt-embedded, G+C-rich lncRNA in murine cytomegalovirus (MCMV). These results indicate that HCMV RNA4.9 plays an important role in regulating viral DNA replication, that the levels of ssDBP are coupled to the oriLyt activity, and that these regulatory features may be conserved among betaherpesviruses

    Identification and Molecular Characterization of the Switchgrass AP2/ERF Transcription Factor Superfamily, and Overexpression of PvERF001 for Improvement of Biomass Characteristics for Biofuel

    Get PDF
    The APETALA2/ethylene response factor (AP2/ERF) superfamily of transcription factors (TFs) plays essential roles in the regulation of various growth and developmental programs including stress responses. Members of these TFs in other plant species have been implicated to play a role in the regulation of cell wall biosynthesis. Here, we identified a total of 207 AP2/ERF TF genes in the switchgrass genome and grouped into four gene families comprised of 25 AP2-, 121 ERF-, 55 DREB (dehydration responsive element binding)-, and 5 RAV (related to API3/VP) genes, as well as a singleton gene not fitting any of the above families. The ERF and DREB subfamilies comprised seven and four distinct groups, respectively. Analysis of exon/intron structures of switchgrass AP2/ERF genes showed high diversity in the distribution of introns in AP2 genes versus a single or no intron in most genes in the ERF and RAV families. The majority of the subfamilies or groups within it were characterized by the presence of one or more specific conserved protein motifs. In silico functional analysis revealed that many genes in these families might be associated with the regulation of responses to environmental stimuli via transcriptional regulation of the response genes. Moreover, these genes had diverse endogenous expression patterns in switchgrass during seed germination, vegetative growth, flower development, and seed formation. Interestingly, several members of the ERF and DREB families were found to be highly expressed in plant tissues where active lignification occurs. These results provide vital resources to select candidate genes to potentially impart tolerance to environmental stress as well as reduced recalcitrance. Overexpression of one of the ERF genes (PvERF001) in switchgrass was associated with increased biomass yield and sugar release efficiency in transgenic lines, exemplifying the potential of these TFs in the development of lignocellulosic feedstocks with improved biomass characteristics for biofuels

    A novel neuroprotective therapy for Parkinson's disease using a viral noncoding RNA that protects mitochondrial complex I activity.

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disorder that results in the loss of nigrostriatal dopamine neurons. The etiology of this cell loss is unknown, but it involves abnormalities in mitochondrial function. In this study, we have demonstrated that the administration of a novel noncoding p137 RNA, derived from the human cytomegaloviral β2.7 transcript, can prevent and rescue dopaminergic cell death in vitro and in animal models of PD by protecting mitochondrial Complex I activity. Furthermore, as this p137 RNA is fused to a rabies virus glycoprotein peptide that facilitates delivery of RNA across the blood-brain barrier, such protection can be achieved through a peripheral intravenous administration of this agent after the initiation of a dopaminergic lesion. This approach has major implications for the potential treatment of PD, especially given that this novel agent could have the same protective effect on all diseased neurons affected as part of this disease process, not just the dopaminergic nigrostriatal pathway
    • …
    corecore