185 research outputs found

    Multifragmentation and nuclear phase transitions (liquid-fog and liquid-gas)

    Full text link
    Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid-fog phase transition. The charge distributions of the intermediate mass fragments produced in p(3.6 GeV) + Au and p(8.1 GeV) + Au collisions are analyzed within the statistical multifragmentation model with the critical temperature for the nuclear liquid-gas phase transition Tc as a free parameter. The analysis presented here provides strong support for a value of Tc > 15 MeV.Comment: 4 pages, 2 figures, Submittet to Proc. of NN2003 to be published in Nucl. Phys.

    Recoil Studies in the Reaction of 12-C Ions with the Enriched Isotope 118-Sn

    Full text link
    The recoil properties of the product nuclei from the interaction of 2.2 GeV/nucleon 12-C ions from Nuclotron of the Laboratory of High Energies (LHE), Joint Institute for Nuclear Research (JINR) at Dubna with a 118-Sn target have been studied using catcher foils. The experimental data were analyzed using the mathematical formalism of the standard two-step vector model. The results for 12-C ions are compared with those for deuterons and protons. Three different Los Alamos versions of the Quark-Gluon String Model (LAQGSM) were used for comparison with our experimental data.Comment: 10 pages, 6 figures, submitted to Nucl. Phys.

    Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon

    Full text link
    We present an extensive overview of production cross sections and kinetic energies for the complete set of nuclides formed in the spallation of 136Xe by protons at the incident energy of 1 GeV per nucleon. The measurement was performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt). Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the largest neutron excess. The kinematic data and cross sections collected in this work for the full nuclide production are a general benchmark for modelling the spallation process in a neutron-rich nuclear system, where fission is characterised by predominantly mass-asymmetric splits.Comment: 18 pages, 14 figure

    Critical Temperature for the Nuclear Liquid-Gas Phase Transition

    Full text link
    The charge distribution of the intermediate mass fragments produced in p (8.1 GeV) + Au collisions is analyzed in the framework of the statistical multifragmentation model with the critical temperature for the nuclear liquid-gas phase transition TcT_c as a free parameter. It is found that Tc=20±3T_c=20\pm3 MeV (90% CL).Comment: 4 pages, 3 figures, published in Phys. Rev.

    High-resolution velocity measurements on fully identified light nuclides produced in 56Fe + hydrogen and 56Fe + titanium systems

    Full text link
    New experimental results on the kinematics and the residue production are obtained for the interactions of 56Fe projectiles with protons and (nat)Ti target nuclei, respectively, at theincident energy of 1 A GeV. The titanium-induced reaction serves as a reference case for multifragmentation. Already in the proton-induced reaction, the characteristics of the isotopic cross sections and the shapes of the velocity spectra of light residues indicate that high thermal energy is deposited in the system during the collision. In the 56Fe+p system the high excitation seems to favour the onset of fast break-up decays dominated by very asymmetric partitions of the disassembling system. This configuration leads to the simultaneous formation of one or more light fragments together with one heavy residue.Comment: 24 pages, 21 figures, 1 table, this work forms part of the PhD thesis of P.Napolitani, background information on http://www-w2k.gsi.de/kschmidt

    Exact thermodynamics of an Extended Hubbard Model of single and paired carriers in competition

    Get PDF
    By exploiting the technique of Sutherland's species, introduced in \cite{DOMO-RC}, we derive the exact spectrum and partition function of a 1D extended Hubbard model. The model describes a competition between dynamics of single carriers and short-radius pairs, as a function of on-site Coulomb repulsion (UU) and filling (ρ\rho). We provide the temperature dependence of chemical potential, compressibility, local magnetic moment, and specific heat. In particular the latter turns out to exhibit two peaks, both related to `charge' degrees of freedom. Their origin and behavior are analyzed in terms of kinetic and potential energy, both across the metal-insulator transition point and in the strong coupling regime.Comment: 14 pages, 15 eps figure
    corecore