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Exact thermodynamics of an extended Hubbard model of single and paired carriers in competition

Fabrizio Dolcini* and Arianna Montorsi†

Dipartimento di Fisica and Unita` INFM, Politecnico di Torino, I-10129 Torino, Italy
~Received 11 October 2001; published 27 March 2002!

By exploiting the technique of Sutherland’s species, introduced in Phys. Rev. B63, 121103, we derive the
exact spectrum and partition function of a one-dimensional extended Hubbard model. The model describes a
competition between dynamics of single carriers and short-radius pairs, as a function of on-site Coulomb
repulsion~U! and filling (r). We provide the temperature dependence of the chemical potential, compressibil-
ity, local magnetic moment, and specific heat. In particular the latter turns out to exhibit two peaks, both related
to ‘‘charge’’ degrees of freedom. Their origin and behavior are analyzed in terms of kinetic and potential
energy, both across the metal-insulator transition point and in the strong-coupling regime.

DOI: 10.1103/PhysRevB.65.155105 PACS number~s!: 71.10.Fd, 71.27.1a, 71.30.1h, 05.30.2d

I. INTRODUCTION

In condensed matter, electron systems in regimes of high
correlation are known to be suitably modeled by the Hubbard
Hamiltonian2 and its generalizations.3–9 For such models, the
finite-temperature properties are the ultimate results which
theoretical investigations~numerical or analytical! aim to
reach, in view of comparisons to experimental data. Indeed
some observables exhibit intriguing features as a function of
the temperature, which deserve an accurate interpretation.

In particular, the thermodynamics of the standard Hub-
bard model has been widely investigated. InD51 this was
done by different exact approaches: in Refs. 10 and 11 and in
Ref. 12 for the usual case of nearest-neighbor hopping, while
in Ref. 13 for the case of long-range hopping. In dimensions
greater than 1 recent results were obtained by exact diago-
nalization on small clusters14,15 and numerical
investigations,16,17 whereas the caseD5` has been exam-
ined in Ref. 18 by iterated perturbation theory.

All the results show interesting behaviors as a function of
temperature, with varying the filling and the Coulomb repul-
sion. This is the case, for instance, for the specific heat,
where a double-peak structure as well as the appearance of
quasiuniversal crossing points were found, which features
were already noticed in some experimental data.19,20 In the
strong-coupling regime the presence of a two-peak structure
is usually related to the so-called ‘‘spin’’ and ‘‘charge’’ de-
grees of freedom. Numerical results in one11 and two
dimensions16,17 show that, at least at half-filling, such struc-
ture survives also at moderate couplings.

Contrary to the ordinary Hubbard model, which has been
approached through several techniques, for the extended
Hubbard models most finite-temperature results have been
carried out by means of mean-field theories.7 In one dimen-
sion, however, it is known that traditional approaches to
many-body systems such as mean-field or Fermi-liquid theo-
ries are either unreliable or inapplicable. As a consequence,
both numerical techniques~like the density matrix renormal-
ization group21! and nonconventional analytical approaches
~like bosonization22! have to be supported by comparison
with exact solutions, whenever available; this is basically the

reason for the growing interest devoted to finite-temperature
exactresults.

The main technique within exact approaches to one-
dimensional~1D! systems is the Bethe ansatz~BA!, either in
the coordinate23 or in the algebraic24 formulation. Such tech-
nique amounts to guessing for a given model eigenstates of
the form proposed by Bethe,25 and in particular it has been
extensively applied to models of correlated electrons; for in-
stance, the BA equations for a wide class of integrable ex-
tended Hubbard models26 have been recently derived in Ref.
27. However, the actual solution of these equations, i.e., the
evaluation of the quantum numbers characterizing the system
~quasi momenta!, is in general quite difficult, and some hy-
pothesis on their distribution~string hypothesis28! has typi-
cally to be conjectured. In order to derive the complete so-
lution and calculate thermodynamic quantities, one is thus
reduced to solving a system of infinitely many coupled inte-
gral equations, which requires dramatic numerical effort.
More recently, considerable progress has been achieved
through the alternative approach of the quantum transfer
matrix,29 which yields dealing with only a finite number of
coupled integral equations. This has been done for the ordi-
nary Hubbard model12 and for thet-J model,30 as well as for
an extended Hubbard model with bond-charge interaction.31

Nevertheless, determining the actual properties of a model
at finite temperature for arbitrary parameter values remains
in general a very hard task, even when the model is proved to
be integrable and its ground-state features are possibly de-
rived.

In the present paper we present the exact thermodynamics
of a one-dimensional extended Hubbard Hamiltonian~de-
scribed in Sec. II! whose exact analytical ground-state prop-
erties were obtained in Ref. 1 by a technique different from
the BA. We called that technique the Sutherland species~SS!
technique, and here we show how it can be exploited to
derive explicitly the whole spectrum and the partition func-
tion of the model~Sec. III!. In Sec. IV we calculate some
thermodynamic quantities: namely, the chemical potential,
the compressibility, the local magnetic moment, and the spe-
cific heat. In particular in Sec. IV D we focus on the specific
heat, which turns out to exhibit a two-peaks structure. The
origin of such structure and the differences with respect to
the standard Hubbard model are discussed in Sec. V.
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II. MODEL

The Hamiltonian we are interested in reads

Ĥ52t (
^ i , j &,s

~12n̂i 2s!cis
† cj s~12n̂ j 2s!

1Y(
^ i , j &

ci↑
† ci↓

† cj↓cj↑1U(
i

n̂i↑n̂i↓ . ~1!

Here cis
† ,cis are fermionic creation and annihilation opera-

tors on a one-dimensional chain withL sites,sP$↑,↓% is the
spin label, n̂ j s5cj s

† cj s , and ^ i , j & stands for neighboring
sites. The Fock spaceF of the system is the product of theL
four-dimensional vector spacesVj related to each sitej; each
Vj is spanned by the basisu↑& j ,u↓& j ,u0& j ,u↓↑& j , which we
shall also denote in the following asuea& j , a51, . . . ,4,
respectively. We shall adopt for the 1D latticeopenboundary
conditions; as usual, these are not expected to affect the re-
sults in the thermodynamic limit.

In the Hamiltonian~1! the three terms~which will also be
denoted asHt , HY , and HU) represent, respectively, the
kinetics of single carriers, the kinetics of paired carriers, and
the on-site Coulomb repulsion.

More explicitly, Ht describes the hopping of single elec-
trons towards empty sites. This term is thus reminiscent of
the so-called ‘‘U5` Hubbard model.’’ An important differ-
ence must be however highlighted: the latter model reads
P(^ i , j &,scis

† cj sP, whereP5) i(12n̂i↑n̂i↓) projects the dou-
bly occupied sites out of the Hilbert space~which in that case
is actually 3L dimensional!; in contrast, the termHt in Eq.
~1!, although not involving pairs, does not exclude their pres-
ence in the state of the system.32

The second term in Eq.~1! is in contrast a kinetic term of
pairs only; it is worth stressing that the model deals with
pairs having a very short radius; in fact, while in models
such as BCS one has several pairs within a radius of the
coherence length, here the radius of a pair is thought of as
small with respect to the lattice constant and is actually taken
as zero. This kind of term is also used in the so-called
Penson-Kolb-Hubbard model~see Ref. 8!, where one inves-
tigates the effects of the pair dynamics without explicitly
entering the microscopic mechanism yielding their
formation.33 We also point out that the first and second terms
in Eq. ~1!, though describing the kinetic of different kind of
carriers~single and pair, respectively!, do notcommute at all.

The third term is traditionally the most important term for
Hubbard-like models; indeed, according to Hubbard’s pic-
ture, it is the parameter that should drive the metal-insulator
transition in the d-transition-metal compounds. Loosely
speaking, the ratioU/t can be thought as proportional to the
inverse of the pressure applied on the sample: by increasing
the pressure one reduces the lattice spacing and thus makes
the hopping amplitude more relevant with respect toU.

The first two terms of the Hamiltonian are in general com-
peting: indeedHt would favor delocalized waves of single
carriers, avoiding the formation of pairs;HY lowers instead
the energy when electrons form tightly bound pairs moving
along the chain. This competition is in addition modulated by

both the term inU and the filling, i.e., the densityr of
electrons in the chain. This can be seen by examining the
case

Y52t. ~2!

Indeed for this value of the coupling constant the model has
been proved to be integrable26 and the exact ground-state
phase diagram~reported in Fig. 1! has been obtained in Ref.
1. TuningU andr the model exhibits interesting features; for
instance, even when the value of filling isr,1 and at mod-
erate (U,2t) Coulomb repulsion, it is energetically favor-
able for the system to form pairs and let them move instead
of having only singly occupied sites.

In region I the ground state~g.s.! is made of only doubly
occupied and empty sites; in region II we have also singly
occupied sites~either u↑& or u↓&). In region III-a the g.s. is
that of theU5` Hubbard model and is made of singly oc-
cupied sites~metal!. In region III-b the g.s. of the model
reduces to that of the atomic limit of the Hubbard model
~insulator!. At half-filling ( r51) a charge gapDc5U22t
opens for anyU>2t.

We wish to stress that, unlike many exactly solved elec-
tron systems, the model~1! is not particle-hole invariant:
indeed the first term breaks up the invariance; this leads to
the shape of the phase diagram shown in Fig. 1, which is
asymmetrical with respect to half-filling.

III. SPECTRUM OF THE SYSTEM

In the following we shall assumeY52t, since such a
relation allows for the integrability, as observed above. In
this case, the Hamiltonian~1! can be rewritten in the form

Ĥ5(
^ i , j &

T̂i , j1U(
i

n̂i↑n̂i↓ , ~3!

FIG. 1. Ground-state phase diagram of the model~1! for Y5t,
from Ref. 1. Open, barred, and solid circles, respectively, represent
empty, singly occupied, and doubly occupied sites in the ground
state.
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whereT̂i , j accounts for the first two interaction terms in Eq.
~1!. The term in U is easily checked to commute with
(^ i , j &T̂i , j . Due to the condition~2!, T̂i , j , exhibits the struc-
ture of ageneralizedoff-diagonal permutator between physi-
cal species~PS!, which are the local vectorsuea& ’s. More
explicitly, while the ordinary off-diagonal permutator, when
acting onuea& j ^ ueb& j 11, returnsueb& j ^ uea& j 11 for any a
Þb and zero fora5b, a generalized one makes the ex-
change or gives zero according to the specific values ofa

andb. In our case,T̂i , j permutes the PS of two neighboring
sites only if one belongs to groupA and the other to groupB,
where

A5u↑&,u↓&,u↓↑&, B5u0&. ~4!

In all the remaining casesT̂i , j gives zero. The above groups
A andB of PS can be identified with the Sutherland species
of the model~1! ~see Ref. 1!; the notion of SS is strictly
related to the structure of the Hamiltonian and not to that of
the underlying Hilbert space.34 In D51 a generalized per-
mutator between PS has the same eigenvalues as an ordinary
permutator between the corresponding SS. This is actually
what allows us to provide the exact spectrum, as we shall see
below.

The Fock spaceF of the system isF5 % N50
2L HN , where

HN is theN-electron Hilbert space (N̂5( i 51
L n̂i↑1n̂i↓). How-

ever, due to the properties of the Hamiltonian, it turns out to
be useful to rearrangeF in terms of HNA

, i.e., the spaces

spanned by all vectors that have a definite numberNA of
sites occupied by states of speciesA ~‘‘ A sites’’ henceforth!.
ClearlyNB5L2NA . According to the properties of the gen-
eralized permutator fulfilled byH, the latter commutes with
N̂A5( i 51

L n̂i↑1n̂i↓2n̂i↑n̂i↓ , and thusHNA
is preserved by

the dynamics~this would hold in any dimension!. In addi-
tion, dealing with an open chain, one can have 3NA possible
sequencesS of A sites for a fixed numberNA . Notice also
that, since~i! the first term of Eq.~3! only permutesA with B
and gives zero otherwise and~ii ! the second term merely
counts the number of doubly occupied sites, also the se-
quenceS is preserved by the dynamics, and it can be iden-
tified with an invariant subspace withinHNA

. The dimension

of each of these 3NA subspaces is (NA

L ), accounting for all

possible actual positions ofA sites along the chain. One can
repeat the above foliation for allHNA

’s (NA runs from 0 toL)
and check that the Fock space is completely recovered:

(
NA50

L

3NAS L
NA

D54L, ~5!

so thatF5 % NA50
L HNA

.

Focusing on a givenHNA
, one can characterize each of its

basis vector by specifying two discrete-valued functions
S(m) andJ(m) (m51, . . . ,NA). The former, which is val-
ued 1~for u↑&), 2 ~for u↓&), or 3 ~for u↓↑&), determines the
sequenceS of A sites and, thus, the invariant subspace in
which the vector lies; the latter, which is valued 1 toL,

determines the actual positions of themth A site along the
chain. The basis vectors can therefore be referred to as
u$S%,$J%&, where ‘‘$ %’’ is to remind one thatS and J are
functions.

In realizing that the Hamiltonian can be separately diago-
nalized within each subspace characterized by a givenA se-
quenceS, it is also crucial to observe that each such invariant
subspace can be put in a one-to-one correspondence with the
states ofNA spinless fermion space~or equivalently with a
spin-1/2 model with magnetizationL2NA) as follows:

u$S%,$J%&↔S )
m51

NA

aJ(m)
† D u0&, ~6!

wherea† are the creation operators for a spinless fermions
and $S% the sequence of the subspace.

Similarly to what has been done in Ref. 6 for another
extended Hubbard model, it is also easy to derive the form of
an effective Hamiltonian for the spinless fermion states: in-
deed, since the first term in Eq.~3! reduces to a permutator
between SS, it actually acts on the considered subspace in
the same way as a free Hamiltonian2t(^ i , j &ai

†aj acts on the
spinless problem space. The second term simply counts the
number of speciesA of kind u↓↑&, namely, N↑↓
5( i 51

L ni↑ni↓[N2NA . Therefore the spectrum in each sub-
space is given by

E~$nA%;N!5 (
k51

L

~22t cosk2U !nk
A1UN, ~7!

where$nk
A% are quantum numbers valued 0 or 1,k5p l /(L

11) (l 51, . . . ,L), andN is the total number of electrons
~which ranges fromNA to 2NA). The eigenvectors are given
by the antitransform through Eq.~6! of spinless fermion
eigenstates@)k( i 51

L sin(ki)ai
†#u0&, where the product is over

NA of the L allowed values ofk.
When passing from a subspace ofHNA

to another, one
finds an identical replica of this spectrum, which amounts to
having a degeneracy of the eigenvalues. The degeneracyg
corresponds to the different ways in which one can choose a
speciesA at a given site provided thatN remains unchanged
~i.e., one has the freedom to change singly occupiedu↑& into
u↓& and vice versa!; it is therefore easily seen that

g„E~$nk
A%;N!…522NA2NS NA

N2NA
D . ~8!

To conclude this section, we wish to emphasize that the spec-
trum ~7! has been derived by means of the Sutherland spe-
cies technique underopenboundary conditions. In fact the
same model was also studied underperiodic boundary
conditions,27 within the algebraic Bethe ansatz approach.
However, in the latter case the resulting equations for the
quantum numbers do not allow a straightforward evaluation
of the eigenvalues; indeed the thermodynamics of Eq.~1!
had not been derived yet.
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IV. THERMODYNAMICS

Thanks to the exact spectrum obtained in the previous
section, we can now pass to the study of its thermodynamics,
through the exact calculation of the grand partition function.
The language of Sutherland’s species turns out to be very
useful to this aim; indeed, due to the rearrangement of the
Fock space described above, one can write

Z5Tr~e2b(H2mN̂)!

5 (
$nk

A%
(

N5NA

2NA

22NA2NS NA

N2NA
D

3expS 2bF (
k51

L

~22t cosk2U !nk
AG2b~U2m!ND

5 (
$nk

A%

~21e2b(U2m)!NAexpS (
k51

L

@b~2t cosk1m!#nk
AD

5)
k51

L

„11exp$b@2t cosk1m1n~U,b,m!#%…, ~9!

where we have definedn(U,b,m)5 ln(21e2b(U2m))/b, b
51/(kBT) being the inverse temperature andm the chemical
potential as usual.

The grand potential is easily obtained asv5v(b;U;m)
52 limL→`b21(ln Z/L). After introducingme f f5m1n, v
reads

v~b;U;m!

52
1

pbE0

p

dk ln„11exp$b@2t cosk1me f f~U,b,m!#%….

~10!

Remarkably, the grand potential is formally similar to that of
a tight-binding model with aneffectivechemical potential
me f f . We stress thatme f f(U,b,m) depends on the on-site
Coulomb repulsion, the temperature, and the chemical poten-
tial in a highly nonlinear way. This yields peculiar features of
the model, as we shall show in the following.

In deriving the thermodynamics of the system, it is cus-
tomary to eliminatem in favor of the fillingr; the latter can
be computed asr52]v/]m, and the result turns out to be
of the following form:

r~U,b,m!5@11C~U,b,m!#rA„b,me f f~U,b,m!…,
~11!

where

C~U,b,m!5
exp@2b~U2m!#

21exp@2b~U2m!#
~12!

and

rA~b,me f f!5
1

pE0

p dk

11exp@b~22t cosk2me f f!#
.

~13!

Notice that differentiatingv with respect tome f f instead of
to m would yield only the right factorrA of Eq. ~11!; the

nonlinearity ofn as a function ofm results in the appearance
of C in the left factor; this causes the relationm
5m(r;T;U) implicitly defined by Eq.~11! to be very differ-
ent from that of a tight-binding model, as we shall explicitly
show in next section.

The two factors in Eq.~11! deserve some comment:rA is
nothing but the density ofA sites along the chain, defined as
rA5 limL→1`^N̂A&/L; the functional dependence ofrA on b
and me f f is that of a spinless tight-binding model. The left
factor provides information, through the functionC, about
the kind of occupancy of the sites of the chain; indeed when
C;0 most of the occupied sites are singly~s! occupied,
whereas ifC;1 most of the occupied sites are doubly~d!
occupied; intermediate values indicate the percentage ofd
with respect tos sites.

To conclude this section we wish to comment about the
energy~per site! of the system; the latter is obtained byE
52 limL→`](ln Z/L)/]b1mr and reads

E~U,b,m!

5
1

pE0

p

dk
22t cosk2U

11exp$b@22t cosk2me f f~U,b,m!#%
1Ur.

~14!

Equation~14! naturally allows one to identify inE a kinetic
energyK and a potential energyP. The former is defined as
the weighted integral of22t cosk and the latter as the
weighted integral of2U, which actually gives2UrA , ac-
cording to Eq.~13!. In fact the actual potential energy would
also contain the last termUr of Eq. ~14!; however, since this
is merely a constant with respect to temperature, we prefer
not to include it in the definition ofP, so that the latter
describes the only temperature-dependent part of the poten-
tial term Un̂i↑n̂i↓ . Notice that with this choice the potential
energy is attracting for positiveU. Notice also that, although
K andP are clearly related to the hopping terms and to the
on-site Coulomb repulsion, respectively, they are not mutu-
ally independent: indeedK depends not only ont but alsoU
and vice versa forP. We shall come back to this point in
discussing the specific heat in Sec. V.

A. Chemical potential

The chemical potentialm(r;T;U) of our model is shown
in Fig. 2 atU5t ~a! andU54t ~b! for different values of the
temperature.

Focusing first on the solid curves, representing the case
T50, one can realize that even in the ground state the rela-
tion betweenm andr is quite different from that of a spin-
less tight-binding model, which would readm(r;T50)
522t cos(pr).

In particular, in Fig. 2~a! we notice that a ‘‘plateau’’ ap-
pears, in correspondence with region II of the ground-state
phase diagram~see Fig. 1!. Interestingly, such a shape re-
minds us of that of a coexistence region connecting the phase
of single carriers~region III-a! to that of pair carriers~region
I!; this would imply that, as the filling is increased, the 1D
lattice starts exhibiting macroscopic regions made of only
single carriers separated by other macroscopic regions where
only pairs are present. In fact, eigenstates with such features
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are certainly present; however, they are degenerate with
other eigenstates, in which single and pair carriers alternate
with no macroscopic order. This is basically due to the de-
generacy ofA sequences in such a region.

In Fig. 2~b! a vertical jump is instead present at half-
filling, as a hallmark of the opening of the charge gap. The
flat part of the solid curve forr.1 just coincides with the
atomic limit behavior~region III-b of Fig. 1!.

Considering now the curves at finite temperature of Fig.
2, one can observe how the edges present atT50 smoothen
as soon asT.0. A remarkable feature is the presence in Fig.
2~b! of a nearly universal point (r* 54/3, m* 5U), where
all the curves of sufficiently low temperature basically inter-
sect. Such kinds of points are in general determined through
the conditions]m/]T50 and]2m/]T250. It is in fact pos-
sible to calculate that for anyU.2t andr.1 ~region III-b
of Fig. 1! the low-temperature behavior ofm is given by

m.U1kBT lnS 2~r21!

22r D1O~e2(U22t)/kBT!, ~15!

whence the above conditions are both fulfilled up to expo-
nentially small terms inkBT/t.

We shall also see in Sec. IV D that nearly universal cross-
ing points are exhibited by other observables of the model,
such as the specific heat.

Equation~15! also points out that in our model alinear
low-temperature behavior is possible, differently from the
tight-binding model, where only even powers inT are al-
lowed in the Sommerfeld expansion. In general, in our
model, different behaviors ofm arise according to the values
of U andr. For instance, forU andr belonging to the mixed
region II of Fig. 1, the chemical potential at low temperature
has again a linear term,

m.U1kBT lnS 2~r2 r̄ !

2r̄2r
D 1O„~kBT/t !2

…, ~16!

but with a coefficient which depends onU, sincer̄5 r̄(U)
5p21cos21(2U/2t).

In contrast, when the charge gapDc5U22t opens~i.e.,
at r51 andU.2t), m acquires a highly nonlinear form

m.2t1
Dc

2
1

kBT

4t
lnS kBT

4pt D , ~17!

indicating that the behavior is definitely different to that of
an intrinsic semiconductor.

In Fig. 3 we explicitly examine the behavior ofm as a
function of temperature for a fixed value of on-site Coulomb
repulsion (U/t51) and for different fillings. A main differ-
ence has to be emphasized with respect to the case of a
tight-binding model: in the latter the curves ofm are specular
for filling values that are symmetric with respect to half fill-
ing ~i.e., m→2m for r→22r), whereas this is not the case
in our model, due to the fact that it is not particle-hole in-
variant.

B. Compressibility

The compressibilityk5]r/]m can be easily evaluated
through Eq.~11!. In Fig. 4 we have plottedk as a function of
the temperature for a fixed value ofU ~namely,U/t51.0)
and for different fillings. One can observe the change in the

FIG. 2. The relation betweenr andm for different temperatures
at U/t51 ~a! andU/t54 ~b!. For T50, the curve in~a! shows a
plateau, related to ‘‘phase coexistence’’ in mixed region II of Fig. 1,
whereas the curve in~b! exhibits a jump inm, due to the opening of
charge gap at half-filling.

FIG. 3. The behavior ofm as a function of temperature for fixed
U/t51 and different values of filling. The asymmetry with respect
to the half-filled caser51 is ascribed to the lack of particle-hole
invariance of the model.
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low-temperature behavior when tuning the filling: atr50.5
the behavior is regular, while at half-fillingk undergoes a
singularity for T→0; eventually (r51.5) its behavior is
again regular. The reason for the low-temperature singularity
atr51 is that in the ground state the point (U/t51;r51) is
situated in region II~see Fig. 1!, i.e., in the region where the
chemical potential exhibits the plateau, as shown in Fig. 2;
such a singularity is indeed present for all values ofU andr
that belong to that region of the ground state. The divergence
of k can be proved to be of the type}T21.

In contrast the behavior forT→0 atr50.5 andr51.5 is
regular since such filling values belong to regions III-a and I,
respectively.

In Fig. 5 we have examined in detail the case of half-
filling, plotting k as a function ofT for different values ofU;
one can explicitly observe howU52t is the critical value
separating the divergent behavior forU,2t from the regular
one for U.2t. Indeed, as soon asU.2t, the divergence
becomes a pronounced peak ink; the temperatureT* at
which the peak occurs increases with increasingU, similarly
to what happens in the ordinary Hubbard model, according
to the results of Ref. 12 Notice that in contrast no singular
behavior is expected at moderateU ’s in the ordinary Hub-
bard model at half-filling, since in that case the system is
insulating for any positiveU.

C. Local magnetic moment

The local magnetic moment was first introduced in Ref.
14 and is defined as

l05 lim
L→`

K 1

L (
j

~ n̂ j↑2n̂ j↓!2L . ~18!

It characterizes the magnitude of spin at each site, i.e., the
degree of localization of electrons. In terms of the density of
A sites, l0 can be easily rewritten asl05r22r↑↓52rA
2r, whererA can be computed from Eq.~13!. In Fig. 6 we
have reported the local magnetic moment at half-filling for
different values of the on-site Coulomb repulsion. One can
observe that the behavior ofl0, even within a relatively
small range of values ofU, is quite rich. In order to describe
it, we first consider the case of small values ofU ~namely,
U51.4t in the figure!; we recall that in the ground state such
a value corresponds to the mixed region II~see Fig. 1 atr
51), meaning that hopping paired electrons are present at
T50; as the temperature is turned on,l0 first increases with
T ~indicating that the pairs are broken in favor of single
carriers!; however, after reaching a maximum at a tempera-
ture T* , l0 starts decreasing for higherT’s, denoting that
pairs are now reformed by higher thermal excitations. Ac-
cording to the above observations, it easy to realize that the
temperatureT* decreases with increasingU; in fact the

FIG. 4. The compressibility as a function of temperature at fixed
on-site Coulomb repulsionU/t51.0 and for different filling values.
k diverges asT→0 for values ofU/t and r belonging to mixed
region II of Fig. 1.

FIG. 5. The compressibility as a function of temperature at fixed
filling r51 and for several values of on-site Coulomb repulsion. As
the charge gap opens (U.2t), k acquires an exponential low-
temperature behavior.
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maximum disappears forU.1.85, so thatl0 becomes a
definitely decreasing function of the temperature. AtU
52t, l0 reaches atT50 the saturation value 1~all singly
occupied sites!, with an infinite derivative with respect to the
temperature. Passing throughU52t, an abrupt change in the
low-temperature slope occurs: the curve ofl0 suddenly flat-
tens as soon asU.2t. This reflects the metal-insulator tran-
sition occurring in the ground state; indeed the opening of
the charge gap causes the formation of pairs to be highly
unfavored at lowT’s.

D. Specific heat

In this subsection we present our results on the specific
heat of model~1! which can be computed through

CV5
dE
dT

52kBb2S ]E
]b

2
]E
]m

]r

]bY ]r

]m D , ~19!

where the energyE is given by Eq.~14!. Below we study the
temperature dependence ofCV when varying the physical
parametersU andr. The exact calculation shows that in our
model a two-peak structure is definitely present not only in
the strong-coupling regime, but also at moderateU ’s.

We start by considering the case of half-filling (r51).
The two peaks appear first for 1.3&U/t&1.8 ~see Fig. 7!; in

this range ofU ’s, CV also exhibits a nearly universal cross-
ing point atkBT;0.85t; we shall comment on such feature
at the end of this subsection. The peaks eventually merge
into one forU/t;1.85. However, as soon asU.2t ~see Fig.
8!, a new well-pronounced low-temperature peak appears.
The recovered double-peak structure is present up toU;3t,
where finally only one peak survives.

By comparing Figs. 7 and 8, one can notice that the
metal-insulator transition pointU52t is also the hallmark of
a crossover in the low-temperature behavior ofCV . In par-
ticular, the calculation shows that forU,2t the latter is
linear,

CV.
kB

2pA12~U/2t !2 S p2

3
1 ln2

4~12 r̄ !r̄

~2r̄21!2 D kBT

t
,

~20!

wherer̄ is defined as in Eq.~16!. In contrast, forU.2t, CV
exhibits an exponential-like behavior given by

CV.
kB

~4p!1/4S Dc

2t D
2S kBT

t D 7/4

expS 2
Dc

2kBTD , ~21!

whereDc5U22t is the charge gap.
To conclude the study at half-filling we have examined

the case of largeU/t ~see Fig. 9!. The result shows that only
one peak is present, at a temperature which increases almost

FIG. 6. Local magnetic moment as a function of the temperature
at half-filling for several values ofU/t. Notice how the low-
temperature behavior abruptly changes across the metal-insulator
transition point. The figure indirectly provides also the behavior of
rA , sincel052rA2r.

FIG. 7. Specific heat as a function ofT at half filling for differ-
ent values ofU/t below the metal-insulator transition value: a two-
peak structure is present, as well as a nearly universal crossing
point. The low-temperature behavior is linear.
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linearly with U (kBT;0.21U). This result can be under-
stood considering that at largeU/t the spectrum~7! exhibits
two different energy scales:~i! a low-energy scale (;t),
which describes fluctuations in theA band, whose effective
filling is given by the value ofrA , and ~ii ! a high-energy
scale~of the order ofU) involving the formation of on-site
pairs, favoring the decrease of the number ofA sites. The
former channel is actually active only forr,1, since at half-
filling the A band becomes completely filled: indeed in this
case we haverA.1 for kBT;t, as can be deduced from Fig.
6 of the local magnetic moment at largeU/t.

Only the high-energy channel is thus active, and its con-
tribution is well described by the atomic-limit model~i.e., t
5Y50), shown by the dotted curve in Fig. 9. The slight
deviations are due to the fact that, as pairs are formed from
singly occupied sites via thermal fluctuations, the number of
effective speciesA decreases, and the formedA holes can
produce~relatively small! fluctuations withT. However, the
larger is U/t, the better is the agreement with the specific
heat of the atomic limit.

We also wish to emphasize that the behavior is different
from that of the ordinary Hubbard model, where two peaks
appears at low temperatures in the strong-coupling limit at
half-filling. In fact, although in the Hubbard model the lower
Hubbard band is filled, spin excitations of low energy (;J

54t2/U) are active. These kind of excitations are instead ab-
sent in our model; we shall comment in more detail in Sec. V
about this point.

In Fig. 10 we investigate the specific heat for filling val-
ues below half-filling: namely,r50.75.

As Fig. 10~a! shows, a double-peak structure ofCV ap-
pears; however, two important differences have to be empha-
sized with respect to the case of half-filling: in the first in-
stance, here the double-peak structure arises and becomes
more evident forlarge values ofU ’s, whereas at half-filling
it is present atmoderate U’s; second, the temperatures of the
two peaks are quite higher than the corresponding ones of
the half-filled case. In particular the position of the low-
temperature peak is practically independent ofU, whereas
the high-temperature one strongly depends on it, similarly to
what happens for the only peak present at half-filling in the
strong-coupling regime~Fig. 9!.

The two peaks of Fig. 10~a! have to be related to the two
energy scales emerging in the spectrum whenU@t, as dis-
cussed above; in particular, the low-temperature one is attrib-
uted to the fluctuations of theA band, which is now partially
filled, unlike for half-filling. We recall that in this range of
the parametersU andr, the ground state of the model is that
of the U5` model~region III-a of Fig. 1!; since the forma-
tion of pairs is strongly inhibited for highU ’s, the physics of
low-energy excitations is fairly captured by that of theU

FIG. 8. Specific heat as a function ofT at half filling and dif-
ferent values ofU/t just above the metal-insulator transition point:
the two-peaks structure definitely disappears forU*3t. The low-
temperature behavior is exponential forU.2t.

FIG. 9. Specific heat as a function ofT for half-filling and 4t
<U<16t. In the strong-coupling regime, the two-peak structure
disappears: the remaining peak is well described from the atomic-
limit model ~dotted curve!. A similar behavior is obtained also at
any r.1.
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5` model at finite temperature, as shown by the solid curve
in Fig. 10~a!. In Fig. 10~b! the caseU/t58 is examined in
detail; in this case the sum of the specific heats ofU5`
model and atomic model practically recovers the actualCV
of our model. Such agreement improves with increasingU,
whereas at moderate values ofU the argument of energy
scale separation does not hold: indeed the high-temperature
peak merges into the low-temperature one forU;2t, andCV
is no longer given as the sum ofU5` and atomic limits@see
Fig. 10~c!#.

We have also considered the case of filling values greater
than 1. In the strong-coupling regime the ground state has the
A band completely filled, the sites of the chain being all
occupied~either singly or doubly, as shown in region III-b of
Fig. 1!; the low-energy scale is thus frozen, just like in the
case of half-filling. This yields the specific heat behavior be
actually described by that of the atomic limit, similarly to
Fig. 9. The temperature of the peak grows linearly with
U @kBT.c(r)U#, the coefficientc being an increasing
function of the fillingr.

Figures 11 and 12 examine the filling dependence of the
specific heat at fixed coupling values. More precisely, Fig. 11

reports the results obtained in the strong-coupling case. As
anticipated above, in this case the low-temperature peak is
perfectly recovered from theU5` model; notice that, since
the latter is particle-hole symmetric around quarter-filling
(r50.5), the low-temperature behavior of curves related to
filling values that are symmetric with respect tor50.5 is
basically identical. In contrast, the higher-temperature peak
does not exhibit such symmetry, being related to the atomic
limit of the Hubbard model, which is no more particle-hole
symmetric around quarter-filling.

Figure 12 is concerned with the behavior at moderateU ’s
~namely,U/t51.5) as a function ofr; the remarkable feature
is the appearance of a nearly universal crossing point at low
temperature (kBT;0.2t) for a finite range of filling values
(1.0&r&1.3). Similarly, a nearly universal crossing point
also occurs at fixed filling for varyingU, as Fig. 7 shows.
The latter type of behavior is also exhibited by the ordinary
half-filled Hubbard model;12,13,17,18however, to the authors’
knowledge, theoretical investigations were mostly limited to
the case of fixed filling and varyingU/t. In contrast, here we
have explored the case of varyingr as well; this is interest-
ing in view of a comparison with experimental results, where
U/t can be roughly interpreted as the inverse pressure and
d5u12ru as the doping. In fact, this type of universal be-
havior has been observed in many heavy-fermion com-

FIG. 10. The specific heat as a function of temperature forr
50.75. In~a!, CV is plotted for different values ofU/t; ~b! at strong
coupling (U/t58) the specific heat of the model~solid line! is well
reproduced by the sum~dot-dashed line! of the specific heat of the
U5` model~dashed line! and of the atomic limit~dotted line!; ~c!
this is not the case at moderate coupling, where the energy scales of
the two models become comparable (U/t52).

FIG. 11. The specific heat as a function of temperature at strong
coupling andr,1. The low-temperature behavior is the same for
values ofr symmetric with respect tor50.5: indeed in this case
low-energy excitations are well described by theU5` Hubbard
model, which is particle-hole invariant around quarter-filling. Dif-
ferences instead emerge at high temperatures.
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pounds, such as the cerium ones, both at fixed doping with
varying pressure,19 and at fixed pressure with varying
doping.20 Let us notice that, for the ordinary Hubbard model,
the presence of the nearly universal point inU has been
explained in Ref. 35, as a consequence of the fact that the
entropySat high temperatures does not depend onU, in that
case. For our model,S at high temperatures is also indepen-
dent of U; however, it turns out that itdoesdepend onr.
Hence we expect that the argument in Ref. 35 cannot be
applied to explain the nearly universal crossing point inr
shown in Fig. 12.

Finally, the specific heatCV is investigated in Fig. 13 also
for negative values of the Coulomb interaction, at half-
filling. The behavior is quite different with respect to the
positive-U case for moderate and intermediateU values,
since no double peak is present.

In contrast, such structure emerges at higher coupling val-
ues; also in this case two separate energy scales emerge.
However, the low-temperature peak is now reproduced by
that of theXX0 model (t50), whose ground state actually
coincides with that of our model, for these values ofU andr
~see region I in Fig. 1!. The high-temperature peak is still
due to the negative-U atomic limit (t5Y50). In Fig. 13~b!
it is clearly shown how, in the strong-coupling case, the
simple sum of the specific heats ofXX0 and atomic limit
perfectly reproduces the result for our model; this is not the
case by at lowerU values.

V. DISCUSSION

As outlined in the previous section, our results show that
the specific heat exhibits a two-peak structure for different
values of on-site Coulomb repulsionU and filling r. In the
present section we wish to discuss the origin of the two
peaks, since in the last few years much effort has been made
to clarify a similar behavior occurring in the ordinary Hub-
bard model. As mentioned in the Introduction, in the latter
model the two peaks are usually explained in terms of
‘‘spin’’ and ‘‘charge’’ excitations.

The above argument cannot be applied here, since our
model involves only charge degrees of freedom: in fact, from
the formal point of view of quantum numbersnk

A , the exci-
tation processes in the spectrum~7! have the typical feature
of charge excitations~in the sense ofA species!. It is, how-
ever, worth emphasizing that, just like for the ordinary Hub-
bard model, the nomenclature based on quantum numbers
does not strictly correspond to itsphysicalmeaning. In our
case, the charge degrees of freedom ofA species actually
carry bothchargeandspin density fluctuations: the breakup
of a localized pair into two single carriers indeed leads to a
redistribution of the charge density as well as to the forma-
tion of a triplet replacing a singlet state.

In our model any peak of the specific heat has thus to be

FIG. 12. The specific heat as a function of temperature in the
moderate-U regime. A nearly universal crossing point with varying
r at fixedU is observed for values ofr in the range 0.9&r&1.3.

FIG. 13. The specific heat as a function of temperature at half-
filling for negative values ofU. ~a! The double peak emerges asuUu
is increased.~b! In the strong-coupling regime (U/t5215.0), CV

is fairly reproduced by the sum of theXX0 contribution~dashed
line! and the atomic limit contribution~dotted line!.
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ascribed just to charge excitations. We have seen in Sec.
IV D that, when varying the parametersU andr, the peaks
can merge into one and possibly reappear. In the following
we shall discuss such a structured behavior through the ki-
netic and potential contributions toCV : namely, the deriva-
tivesK8 andP8 with respect to the temperature ofK andP,
defined when giving the internal energy~14!.

We start by the case of the strong coupling (U@t), where
our results show a two-peak structure for positiveU and r
,1 @see Fig. 10~b!#, as well as for negativeU at any filling
@see Fig. 13~b!#. Since in these regimes the characteristic
energy scales of the kinetic term~t! and the potential term
~U! of the Hamiltonian are well separated, it is expected that
each of the two peaks is related to one of these terms. In Fig.
14 we have thus plottedK8 and P8 for U/t516 and r
50.75: the two peaks are indeed in perfect correspondence
with the contributions ofK andP. It is also worth stressing
that these two contributions can be quite well described at
strong coupling in terms of two different models: explicitly,
the low-temperature kinetic behavior is captured by theU
5` model for positiveU ’s @Fig. 10~b!# and by theXX0
model for negativeU ’s @Fig. 13~b!#; the high-temperature
potential behavior is instead described by the atomic limit.

In contrast, in the regime of moderateU ’s the two energy
scales become comparable, and the above argument is not
applicable. This gives rise to a completely different scenario;
for instance, at half-filling we observe that by loweringU the
single strong-coupling peak splits into two, whereas forr
,1 the two strong-coupling peaks merge into a single one.
In practice, while foruUu@t the kinetic and potential terms
decouple, at moderateU ’s it is the competitionbetween the
two kinds of energy that determines the actual shape of the
specific heat.

This can be understood by recalling the structure of the
energy spectrum@see Eq.~7!#; both terms can be expressed
in terms of the quantum numbersnk

A , where the total number
of A sites is not a fixed quantity, but can vary in the range
NAP@N/2;N# ~the electron numberN being obviously fixed!.
This property actually yields the competition betweenP and
K: indeed the kinetic term may favor the decrease ofNA , in
order to eliminate possible positive contributions of
22t cosk, whereas the potential term favors the increase of
NA ~i.e., the breaking of on-site pairs!. This competition is
already active atT50, causing the appearance of the differ-
ent regions in the ground-state phase diagram.

At finite temperature two more mechanisms enter driving
such competition:~i! the densityrA of A carriers varies with
T, according also to the values ofU andr, and~ii ! the kinetic
term exhibits the usual thermal fluctuations. The former rep-
resent the crucial difference with respect to an ordinary free
spinless fermion model, where only thermal excitations are
present, atfixednumber of carriers. Notice also that the vari-
ability of rA can happen to contrast the effect of thermal
fluctuations: this is the case whenrA decreases withT, since
this would yield a reduction ofK, while thermal fluctuations
would lead to an increase of it. As a consequence, a further
competition, concerned with the purely kinetic contribution,
may occur.

In Fig. 15 we plot the derivativesK8 andP8 of the kinetic
and potential parts for various moderateU ’s at half-filling.
Starting fromU/t51.6 we observe that at low temperatures
both K8 andP8 exhibit a peak at nearly the same tempera-
ture T1; this is due to the fact that in this regime they are
driven by the same mechanism~formation of pairs from sin-
gly occupied sites!. The two contributions of opposite signs
do not completely cancel each other; the kinetic one prevail-
ing, a kinetic low-temperature peak appears inCV . Notice
that the value ofCV at the peak is relatively small with
respect to that ofK8 and P8; this is just the hallmark of a
competition between the two contributions.

At a higher temperatureT.T2, located in between the
two peaks ofCV , K8 has a flat minimum andP8 a flat
maximum. Finally, at still higher values of temperature,K8
exhibits a second maximum atT3, andP8 is smoothly de-
creasing; in correspondence,CV exhibits the second peak, of
kinetic origin.

As U is increased@Fig. 15~b!#, the value ofT1 decreases
and the absolute height of both the above contributions dras-
tically vanishes, so that the low-temperature peak becomes a
sort of ‘‘shoulder.’’ At the same time, the minimum of the
kinetic contribution and the maximum of the potential con-

FIG. 14. The kinetic~dashed line! and potential~dotted line!
contributions to the specific heat~solid line! at strong coupling
(U/t516) for r50.75. The low-temperature peak is basically due
to K8, while the high-temperature peak stems fromP8. In this re-
gime (U@t), K8 is also well described by the specific heat ofU
5` Hubbard model andP8 by that of the atomic limit~dashed and
dotted curves of Fig. 10!.
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tribution located aroundT2 have become more pronounced,
andT2 itself has decreased@see Fig. 15~c!#. As U reaches the
value 2t of the metal-insulator transition, bothT1 and T2
vanish and the magnitude of the corresponding extrema be-
comes infinite @Fig. 15~d!#. For U.2t @Figs. 15~d! and
15~e!#, the T2 extrema are regularly restored and, since the
T1 extrema have disappeared, they become the new low-
temperature extrema. At this temperatureCV exhibits now a
new peak. Thus, forU.2t, the potential contribution pre-
vails on the kinetic one, and the nature of the low-
temperature peak changes with respect to the caseU,2t.
Notice thatT2 now increases withU @Figs. 15~e! and 15~f!#.
Finally, at higher temperatures another broad peak originates
from the ~old! second maximum of the kinetic part. Such a
high-temperature (T3) peak is very broad, and it definitely
disappears whenU is further increased above 3t.

The above observations show that at half-filling, passing

through the pointU52t of the metal-insulator transition, the
nature of the low-temperature peak changes its origin from a
kinetic to a potential one, whereas at moderateU ’s a further
peak of kinetic origin appears at higher temperatures. In
passing let us also notice that at strong coupling a kinetic
~potential! peak is a peak to which onlyK8(P8) basically
contributes,P8(K8) being almost vanishing~see Fig. 14!; in
contrast, at moderateU ’s a kinetic~potential! peak is a peak
for which the kinetic contribution slightly prevailing on the
potential~kinetic! one.

The results obtained for our model can be compared with
those concerning the ordinary Hubbard model. In the strong-
coupling regime of this model the low-temperature peak is
attributed to spin excitations~the corresponding temperature
being of the order of J54t2/U), whereas the high-
temperature peak is related to the charge excitations~since it
is located atkBT;U). With lowering U, it is widely ac-
cepted that the two peaks merge atU.4t; however, some
investigations have been carried out at still lowerU ’s, show-
ing that a double-peak structure reappears forD51 ~Ref. 11!
and D52 ~Refs. 16 and 17!. It is customary to relate the
origin of these new peaks again to spin and charge degrees of
freedom, respectively.

The Hubbard model is considered the paradigm within
strongly correlated systems, so that the presence of a two-
peak structure in the specific heat of such systems tends natu-
rally to be interpreted as the signature of spin and charge
excitations.

However, in the authors’ opinion, not enough attention
has been devoted to the effect that further interaction terms
in the Hamiltonian have on the specific heat. To this purpose,
the exact results obtained for our model show that, when a
possible competition between single and paired carriers is
taken into account, the specific heat turns out to exhibit a
structured two-peak behavior, in spite of the fact that only
charge degrees of freedom are involved. Although our model
neglects some terms such as the nearest-neighbor charge in-
teraction (;Vn̂isn̂ j s8), we believe that it can reproduce
some features of realistic materials which are not explicitly
taken into account in the ordinary Hubbard model: namely,
~a! the opening of the gap at afinite value ofU/t, i.e., at a
finite value of pressure on the sample;~b! the lack of
particle-hole symmetry, observed in heavy-fermion com-
pounds; and~c! the presence of a mechanism favoring the
kinetic of paired carriers, as is the case in cuprate supercon-
ductors. In view of these observations, we suggest that the
interpretation of a two-peak structure inCV may not neces-
sarily be related to spin and charge excitations; a comparison
with the behavior of pure spin quantities, such as magnetic
susceptibility, in correspondence of the peaks temperature
would be more probative.

VI. CONCLUSIONS

In this paper we have calculated the exact thermodynam-
ics of an extended Hubbard model by means of the Suther-
land species technique, which we had previously introduced
to determine the ground-state properties of the same model.1

The model describes a competition between the dynamics of

FIG. 15. The temperature dependence of the kinetic~dashed
line! and potential~dotted line! contributions to the specific heat
~solid line!, in units of kB , at half-filling and different moderate
values ofU. Contrary to the caseU@t of Fig. 14, at moderate
couplingK8 andP8 are competing, since they have relatively large
contributions of opposite signs at roughly the same temperature.
The peaks ofCV are thus ‘‘kinetic’’ ~‘‘potential’’ ! when K8 (P8)
prevails on the other. Notice that the low-temperature peak changes
its origin from kinetic to potential across the metal insulator transi-
tion point; the high-temperature one, present up toU/t.2.5, is
instead always of kinetic origin.~For editing reasons the two bot-
tom figures have a differenty-axis scale.!
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single carriers and that of short-radius paired carriers; such
competition is modulated by the values of the electron filling
r and on-site Coulomb repulsionU. We have calculated the
partition function of the model and derived the finite-
temperature behavior of different physical quantities:
namely, the chemical potential, the compressibility, the local
magnetic moment, and the specific heat. We have discussed
the changes of such observables across the point of the
metal-insulator transitionU52t, providing explicit low-
temperature expressions forCV and m; in particular m is
found to undergo an unusual transition from a linear to a
T ln T dependence. We have then focused on the specific
heat, which turns out to exhibit interesting features, such as a

nearly universal crossing point and a double-peak structure.
The two peaks, which are shown to be related to charge
degrees of freedom only, are present in ranges ofU/t both
below and above the metal-insulator transition value. We
have discussed the two peaks in terms of the kinetic and
potential contributions to the spectrum, outlining the differ-
ences between the cases of strong coupling and moderate
coupling, and comparing our results with that of the ordinary
Hubbard model.

The method presented here to derive the partition function
of our model can be applied, with straightforward generali-
zation, to further integrable extended Hubbard models26 in-
volving two Sutherland species. Work is in progress along
these lines.
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