120 research outputs found

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Measurement of Λ3H{}_{\Lambda}^{3}\mathrm{H} production in Pb-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe first measurement of Λ3H_{\Lambda}^{3}\mathrm{H} and Λ3H^3_ {\overline{\Lambda}}\overline{\mathrm{H}} differential production with respect to transverse momentum and centrality in Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02~TeV is presented. The Λ3H_{\Lambda}^{3}\mathrm{H} has been reconstructed via its two-charged-body decay channel, i.e., Λ3H3He+π_{\Lambda}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi^{-}. A Blast-Wave model fit of the pTp_{\rm T}-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the Λ3H_{\Lambda}^{3}\mathrm{H} kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of Λ3H_{\Lambda}^{3}\mathrm{H} and 3He^3\mathrm{He} is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements

    Particle production as a function of charged-particle flattenicity in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThis paper reports the first measurement of the transverse momentum (pTp_{\mathrm{T}}) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at s=13\sqrt{s}=13 TeV. Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, 2.8<η<5.12.8<\eta<5.1 and 3.7<η<1.7-3.7<\eta<-1.7. According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases towards larger pTp_{\mathrm{T}} due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to pT=20p_{\mathrm{T}}=20 GeV/cc. The event selection requires at least one charged particle produced in the pseudorapidity interval η<1|\eta|<1. The measured pTp_{\mathrm{T}} distributions, average pTp_{\mathrm{T}}, kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using PYTHIA 8 based on color strings and EPOS LHC. The modification of the pTp_{\mathrm{T}}-spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate pTp_{\mathrm{T}} (2<pT<82<p_{\mathrm{T}}<8 GeV/cc), and approaches the vicinity of unity at higher pTp_{\mathrm{T}}. The results are qualitatively described by PYTHIA, and they show different behavior than those measured as a function of charged-particle multiplicity based on the V0M estimator

    J/ψ\psi-hadron correlations at midrapidity in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceWe report on the measurement of inclusive, non-prompt, and prompt J/ψ\psi-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of 13 TeV. The correlations are studied at midrapidity (y<0.9|y| < 0.9) in the transverse momentum ranges pT<40 GeV/cp_{\rm T} < 40~\text{GeV}/c for the J/ψ\psi and 0.15<pT<100.15 < p_{\rm T} < 10 GeV/cc and η<0.9|\eta|<0.9 for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities of Lint=34 nb1L_{\text{int}} = 34~\text{nb}^{-1} and Lint=6.9 pb1L_{\text{int}} = 6.9~\text{pb}^{-1}, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy of E=4E = 4 and 9 GeV9~\text{GeV} in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities of Lint=0.9 pb1L_{\text{int}} = 0.9~\text{pb}^{-1} and Lint=8.4 pb1L_{\text{int}} = 8.4~\text{pb}^{-1}, respectively. The results are presented as associated hadron yields per J/ψ\psi trigger as a function of the azimuthal angle difference between the associated hadrons and J/ψ\psi mesons. The integrated near-side and away-side correlated yields are also extracted as a function of the J/ψ\psi transverse momentum. The measurements are discussed in comparison to PYTHIA calculations

    Charm fragmentation fractions and cc{\rm c\overline{c}} cross section in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceThe total charm-quark production cross section per unit of rapidity dσ(cc)/dy\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y, and the fragmentation fractions of charm quarks to different charm-hadron species f(chc)f(\mathrm{c}\rightarrow {\rm h_{c}}), are measured for the first time in p-Pb collisions at sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV at midrapidity (0.96<y<0.04-0.96<y<0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species: D0\mathrm{D}^{0}, D+\mathrm{D}^{+}, Ds+\mathrm{D}_\mathrm{s}^{+}, and J/ψ\mathrm{J/\psi} mesons, and Λc+\Lambda_\mathrm{c}^{+} and Ξc0\Xi_{\rm c}^{0} baryons. The resulting cross section is dσ(cc)/dy=219.6±6.3  (stat.)  11.8+10.5  (syst.)  2.9+7.6  (extr.)±5.4  (BR)±4.6  (lumi.)±19.5  (rapidity shape)+15.0  (Ωc0)\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y =219.6 \pm 6.3\;(\mathrm{stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm{syst.}) {\;}_{-2.9}^{+7.6}\;(\mathrm{extr.})\pm 5.4\;(\mathrm{BR})\pm 4.6\;(\mathrm{lumi.}) \pm 19.5\;(\text{rapidity shape})+15.0\;(\Omega_{\rm c}^{0}) mb, which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at s=5.02\sqrt{s} = 5.02 and 1313 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p-Pb collisions compared with e+e\mathrm{e^{+}e^{-}} and ep\mathrm{e^{-}p} collisions. The pTp_\mathrm{T}-integrated nuclear modification factor of charm quarks, RpPb(cc)=0.91±0.04  (stat.)0.09+0.08  (syst.)0.03+0.04  (extr.)±0.03  (lumi.)R_\mathrm{pPb}({\rm c\overline{c}})= 0.91 \pm 0.04\;{\rm (stat.)}{}^{+0.08}_{-0.09}\;{\rm (syst.)}{}^{+0.04}_{-0.03}\;{\rm (extr.)}{}\pm 0.03\;{\rm (lumi.)}, is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions

    Measurement of the inclusive isolated-photon production cross section in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at centre-of-momentum energy of s=13\sqrt{s}=13 TeV collected during the LHC Run 2 data-taking period. The measurement is performed by combining the measurements of the electromagnetic calorimeter EMCal and the central tracking detectors ITS and TPC, covering a pseudorapidity range of ηγ<0.67|\eta^{\gamma}|<0.67 and a transverse momentum range of 7<pTγ<2007<p_{\rm T}^{\gamma}<200 GeV/cc. The result extends to lower pTγp_{\rm T}^{\gamma} and xTγ=2pTγ/sx_{\rm T}^{\gamma} = 2p_{\rm T}^{\gamma}/\sqrt{s} ranges, the lowest xTγx_{\rm T}^{\gamma} of any isolated photon measurements to date, extending significantly those measured by the ATLAS and CMS experiments towards lower pTγp_{\rm T}^{\gamma} at the same collision energy with a small overlap between the measurements. The measurement is compared with next-to-leading order perturbative QCD calculations and the results from the ATLAS and CMS experiments as well as with measurements at other collision energies. The measurement and theory prediction are in agreement with each other within the experimental and theoretical uncertainties

    Investigating strangeness enhancement in jet and medium via ϕ\phi(1020) production in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThis work aims to differentiate strangeness produced from hard processes (jet-like) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron (h) acting as a jet-proxy and a produced strange hadron (ϕ(1020)\phi(1020) meson). Measuring hϕ-\phi correlations at midrapidity in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jet-like and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolution of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jet is studied separately, allowing for the characterization of two distinct jet-like production regimes. Furthermore, the hϕ-\phi correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between hϕ-\phi and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the ϕ/h\phi/\mathrm{h} ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total ϕ(1020)\phi(1020) yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying event

    Measurement of Λ3H{}_{\Lambda}^{3}\mathrm{H} production in Pb-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe first measurement of Λ3H_{\Lambda}^{3}\mathrm{H} and Λ3H^3_ {\overline{\Lambda}}\overline{\mathrm{H}} differential production with respect to transverse momentum and centrality in Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02~TeV is presented. The Λ3H_{\Lambda}^{3}\mathrm{H} has been reconstructed via its two-charged-body decay channel, i.e., Λ3H3He+π_{\Lambda}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi^{-}. A Blast-Wave model fit of the pTp_{\rm T}-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the Λ3H_{\Lambda}^{3}\mathrm{H} kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of Λ3H_{\Lambda}^{3}\mathrm{H} and 3He^3\mathrm{He} is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements

    Investigating Λ\Lambda baryon production in p-Pb collisions in jets and underlying event using angular correlations

    No full text
    International audienceFirst measurements of hadron(h)Λ-\Lambda azimuthal angular correlations in p-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV using the ALICE detector at the LHC are presented. These correlations are used to separate the production of associated Λ\Lambda baryons into three different kinematic regions, namely those produced in the direction of the trigger particle (near-side), those produced in the opposite direction (away-side), and those whose production is uncorrelated with the jet-axis (underlying event). The per-trigger associated Λ\Lambda yields in these regions are extracted, along with the near- and away-side azimuthal peak widths, and the results are studied as a function of associated particle pTp_{\rm T} and event multiplicity. Comparisons with the DPMJET event generator and previous measurements of the ϕ(1020)\phi(1020) meson are also made. The final results indicate that strangeness production in the highest multiplicity p-Pb collisions is enhanced relative to low multiplicity collisions in the jet-like regions, as well as the underlying event. The production of Λ\Lambda relative to charged hadrons is also enhanced in the underlying event when compared to the jet-like regions. Additionally, the results hint that strange quark production in the away-side of the jet is modified by soft interactions with the underlying event

    Measurement of Ωc0\Omega^0_{\rm c} baryon production and branching-fraction ratio BR(Ωc0Ωe+νe)/BR(Ωc0Ωπ+){\rm BR(\Omega^0_c \rightarrow \Omega^- e^+\nu_e)} / {\rm BR(\Omega^0_c \rightarrow \Omega^- \pi^+)} in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe inclusive production of the charm-strange baryon Ωc0\Omega^{0}_{\rm c} is measured for the first time via its semileptonic decay into Ωe+νe\Omega^{-}\rm e^{+}\nu_{e} at midrapidity (y<0.8|y|<0.8) in proton-proton (pp) collisions at the centre-of-mass energy s=13\sqrt{s}=13 TeV with the ALICE detector at the LHC. The transverse momentum (pTp_{\rm T}) differential cross section multiplied by the branching ratio is presented in the interval 2<pT<12 GeV/c2<p_{\rm T}<12~{\rm GeV}/c. The branching-fraction ratio BR(Ωc0Ωe+νe)/BR(Ωc0Ωπ+){\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\rm e}^{+}\nu_{\rm e})/ {\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\pi}^{+}) is measured to be 1.12 ±\pm 0.22 (stat.) ±\pm 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented
    corecore